期刊文献+

新型铝基共面微腔等离子体阵列在氖气中放电的光特性研究

Novel Coplanar Microcavity Plasma Array on Aluminum Foil and Optical Characteristics of Discharge in Neon
下载PDF
导出
摘要 在厚度为100μm的铝基底上,制作了一种由隙缝相连的六边形共面微腔阵列,研究了方波驱动下,该微腔阵列在氖气中的放电发光分布与气压的关系,光谱分布及放电的演变过程。结果表明:这种隙缝相连的六边形共面微腔阵列放电时,随气压的升高,发光光强分布从腔体中心位置逐步向腔体侧壁移动,其发光光谱为588 nm的可见光和312 nm的紫外光。增强电荷耦合器件拍摄的阵列放电瞬时状态表明,在一个方波驱动周期的两次放电中,共面微腔等离子体阵列放电演变呈现出等离子波动传播的现象,且这两次传播方向相反,传播速度均为10~15 km/s。 A novel type of the coplanar micro-cavity plasma array,consisting of hexagonal micro-cavities separated by conformal zig-zag slits,was fabricated on the 100 μm thick Al-foil glued on glass. Driven by a square pulse,the influence of the Ne pressure on the optical emission characteristics,time evolutions of glow discharge intensity distribution and spectral profile was investigated. The results show that the Ne pressure has a major impact on the glow discharge and properties of optical emission. To be specific,as the Ne-pressure increased,the emission intensity peak,including 588 nm visible and 312 nm ultra-violet lights,slowly shifted away from the cavity center in radial direction. Depending on the positive/negative halves of a square wave,the plasma wave propagated at 10 ~ 15 km/s in opposite directions,as shown in the photos taken with intensified charge coupled device video camera.
出处 《真空科学与技术学报》 CSCD 北大核心 2017年第4期418-423,共6页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(No.61372018)
关键词 共面微腔等离子体阵列 光强分布 放电演变 波动传播 Coplanar microcavity plasma array Radiation distribution Discharge evolution Propagation
  • 相关文献

参考文献1

二级参考文献22

  • 1Roth J R. Industrial plasma engineering [M]. Bristol, USA Institute of Physics Publishing, 1995.
  • 2Kogelschatz U. Dielectric-barrier discharges: their history, dis- charge physics, and industrial applications[J].Plasma Chemis- try and Plasma Processing, 2003, 23(1): 1-46.
  • 3Massines F, Gouda G. A comparison of polypropylene surface treatment by filamentary, homogeneous and glow discharge in helium at atmospheric pressure[J]. Journal of Physics D: Ap- plied Physics, 1998,31(24) :3411-3420.
  • 4Massines F, Rabehi A, Deeomps P, et al. Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal of Applied Physics, 1998, 83(6): 2950-2957.
  • 5Massines F, Segur P, Gherardi N, et al. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: di- agnostics and modeling [J]. Surface and Coating Technology, 2003, 174/175(9):8-14.
  • 6Anderson C, Hur M, Zhang P, et al. Two-dimensional space- time resolved emission spectroscopy on atmospheric pressure glows in helium with impurities [J]. Journal of Applied Phys- ics, 2004, 96(4):1835-1839.
  • 7Luo Haiyun, Liang Zhuo, Wang Xinxin, et al. Observation of the transition from a townsend discharge to a glow discharge in helium at atmospheric pressure[J]. Applied Physics Letters, 2007, 91(22) ,221504.
  • 8Luo Haiyun, Liang Zhuo, LU Bo, et al. Radial evolution of die- lectric barrier glowlike discharge in helium at atmospheric pres- sure[J]. Applied Physics Letters, 2007, 91(23): 231504.
  • 9Mangolini L, Orlov K, Kortschagen U, et al. Radial structure of a low-frequency atmospheric-pressure glow discharge in heli- um[J]. Applied Physics Letters, 2002, 80(10):1722-1724.
  • 10Martens T, Brok W J M, Dijk J van, et al. On the regime transitions during the formation of an atmospheric pressure di- electric barrier glow discharge[J]. Journal of Physics D: Ap- plied Physics, 2009, 42(12) :122002.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部