期刊文献+

全子半群构成链的富足半群 被引量:1

Abundant Semigroups Whose Full Subsemigroups form a Chain
原文传递
导出
摘要 全子半群定义为含有所有幂等元的子半群.半群称为▽_(fs)-半群,如果它的所有全子半群关于集合包含关系构成一个链.本文研究富足▽_(fs)-半群,得到这类半群的若干特征,特别地,建立了完全0-单▽_(fs)-半群和满足正则性条件的本原富足▽_(fs)-半群的结构. Full subsemigroups are defined as subsemigroups containing all idempo- tents. A semigroup is said to be a △fs-semigroup if its full subsemigroups form a chain under inclusion. The aim of this paper is to investigate abundant △fs-semigroups. Some characterizations of such semigroups are obtained. In particular, the structures of com- pletely O-simple △fs-semigroups and primitive abundant △fs-semigroups satisfying the regularity condition are established.
出处 《数学学报(中文版)》 CSCD 北大核心 2017年第3期439-450,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(11361027 11661042) 江西省自然科学基金(20161BAB201018) 江西省教育厅科研资助项目(GJJ14251) 江西省研究生创新基金资助项目(YC2014-S160)
关键词 富足半群 全子半群 正则性条件 abundant semigroup full subsemigroup chain the regularity condition
  • 相关文献

参考文献2

二级参考文献21

  • 1Sevrin, L.N. and Ovsyannikov, A.J., Semigroups and their subsemigroup lattice, Semigroup Forum, 1983, 27: 1-154.
  • 2Suzuki, M., Structure of a Group and the Structure of this Lattice of Subgroups, Berlin: Springer-Verlag, 1956.
  • 3Johnston, K.G., Subalgebra lattices of completely simple semigroups, Semigroup Forum, 1984, 29: 109-113.
  • 4Jones, P.R., Semimodular inverse semigroups, J. London Math. Soc., 1978, 17: 446-456.
  • 5Jones, P.R., Distriutive inverse semigroups, J. London Math. Soc., 1978, 17: 457-466.
  • 6Johnston, K.G., and Jones, P.R., The lattice of full regular subsemigroups of a regular semigroup, Proc. Royal Sac. Edinburgh, 1984, 98A: 203-214.
  • 7Tamura, T., On monoids whose submonoids form a chain, J. Gakugei Tokushima Univ., 1954, 5: 8-16.
  • 8Jones, P.R., Inverse semigroups whose full inverse subsemigroups form a chain, Glawgow Math. J., 1981, 22: 159-165.
  • 9Guo X.J., Huang F.S. and Shum, K.P., Type-A semigroups whose full regular subsemigroups form a chain under set inclusion, Asian-European J. Math., 2008, 1: 359-367.
  • 10Clifford, A.H. and Preston, G.B., The algebraic theory of semigroups, Vol. I, Math. Survey of the American Math. Soc. 7, Provindence, R.I., 1961.

共引文献22

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部