期刊文献+

316L超低碳奥氏体不锈钢吹氮合金化的动力学研究和应用 被引量:1

Study on Metallurgical Kinetics of Blowing Nitrogen Alloying of Ultra-Low Carbon Austenite Stainless Steel 316L and Application
下载PDF
导出
摘要 根据双膜理论,建立了不锈钢精炼中向钢水吹氮气合金化过程的动力学模型。通过硅钼棒炉研究了恒压(101 kPa),恒温(1 833 K)和恒流量(0.3 L/min)时316L不锈钢(/%:0.031C,0.57Si,1.00Mn,0.021P,0.004S,16.13Cr,10.12N,2.12Mo,0.028N)吹氮时间(0~70 min),氮分压(N_2:Ar=2:1,1:2和1:1)和温度(1 773~1 833K)对该钢氮合金化的影响。结果表明,钢中氮含量随着吹氮时间、氮分压的增加而增加,随吹氮流量增加钢液氮含量达到饱和的时间缩短,氮的溶解度随着钢液温度的降低而升高,合适的钢水温度为~1 500℃。120 t VOD 316L不锈钢工业生产试验表明,在氮气流量42×3 m^3/h时,VOD真空阶段吹氮合金化,钢中的氮含量可达0.04%。 According to double film theory the kinetics model of blowing nitrogen alloying in steel liquid during stain- less steel refining is established. By using silicon-molybdenum bar furnace the effect of nitrogen blowing time (0 - 70 min), nitrogen partial pressure (N2: Ar =2: 1, 1:2 and 1 : 1 ) and temperature (1 773 - 1 833 K) with constant pres- sure ( 101 kPa), constant temperature 1 833 K and constant flow rate 0. 3 L/min on nitrogen alloying of stainless steel 316L (/% : 0. 031C, 0. 57Si, 1.00Mn, 0. 021P, 0. 004S, 16. 13Cr, 10. 12N, 2. 12Mo, 0. 028N) has been studied. Results show that with increasing nitrogen blowing time and nitrogen partial pressure the nitrogen content in steel increases; with in- creasing nitrogen flow rate the blowing time for nitrogen content in liquid up to saturating value decreases; with decreasing liquid temperature the dissolvability of nitrogen in steel increases, and the suitable temperature of liquid is -1 500 ℃. The 120 t VOD commercial pilot production of stainless steel 316L show that by blowing nitrogen alloying during VOD vacuum period with nitrogen flow rate 42 x 3 m3/h the nitrogen content in steel may be up to 0. 04%.
出处 《特殊钢》 北大核心 2017年第3期28-32,共5页 Special Steel
基金 河北省钢铁产业技术升级专项项目(VOD精炼奥氏体不锈钢吹氮合金化技术的研究152176239) 博士基金项目(不锈钢钢液氮含量精确控制技术研究BZ2016002)
关键词 316L超低碳奥氏体不锈钢 吹氮合金化 动力学 VOD Ultra-Low Carbon Austenite Stainless Steel 316L. Blowing Nitrogen Alloying, Kinetics, VOD
  • 相关文献

参考文献5

二级参考文献36

  • 1陆利明,壮云乾,蒋国昌.高氮钢的研究和发展[J].特殊钢,1996,17(3):1-6. 被引量:17
  • 2[1]Fruehan R J.Reaction Model for the AOD Process[J].Ironmaking and Steelmaking,1976,3(3):153-159.
  • 3大野剛正,西田()章.AOD法にぉけゐ脱炭モデル[J].铁と鋼,1977,63(13):2094-2098.
  • 4[3]Reichel J,Szekely J.Mathematical Model and Experimental Verification in the Decarburization of Industrial Scale Stainless Steel Melts[J].I&SM,1995,5:41-48.
  • 5[8]日本學衍振興會制鋼第十九委員會.制鋼反應の推獎平衡值[M].1984.
  • 6[9]Elliott J F.The Chemistry of Electric Furnace Steelmaking[J].Electric Furnace Proceedings,1974,32:62-73.
  • 7[10]Sano M,Mori K.Dynamics of Bubble Swarms in Liquid Metals[J].Trans.ISIJ,1980,20(6):668-672.
  • 8[11]Ban-ya S.Rate of Nitrogen Desorption of Liquid Iron-Carbon and Iron-Chromium Alloys with Argon[J].Metall.Trans.B,1988,19(2):233-242.
  • 9JIANG Zhou-hua. Calculation and Measurements of Nitrogen Contents in Austenitic Stainless Steel Melts by Bubbling Nitrogen Gas[A]. Proceedings of Second International Conference on Advanced Structural Steels[C]. Shanghai. 2004. 852.
  • 10Dailly R B, Hendry A. Mater Sci Forum, 1999; 318-320: 427

共引文献73

同被引文献42

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部