期刊文献+

基于情感标签的极性分类 被引量:4

Polarity Classification Based on Sentiment Tags
下载PDF
导出
摘要 情感极性分析是文本挖掘中一种非常重要的技术.然而在不同领域中,很多情感极性分类系统存在分类精度低和缺少大量标注数据的缺陷.针对这些问题,提出了一种基于情感标签的极性分类方法.首先通过所有文本建立Sentiment-Topic模型,抽取出文本的情感标签;然后利用情感标签将文本划分为两个子文本,并通过Co-training算法对子文本进行分类;最后合并两个子文本的分类结果,并确定文本的情感极性.实验结果表明该方法具有较高的分类精度,而且不需要大量的分类样本. Sentiment analysis is a very important technology in text mining. However,a number of systems require amounts of annotated training data in different fields. In order to solve these problems, an approach to polarity classification based on sentiment tags is proposed. Firstly,o n the basis of all the documents, the sentiment-topic model is developed and the sentiment tags for each review are extracted. Then each review is divided into two sub-texts by these sentiment tags, and each sub-text is classified by exploiting the co-training algorithm. Finally, the category results of two sub-texts are combined to determine document-level polarity of each review. Experimental results show that compared with other algorithms, the method improves the classification precision without a large number of annotated samples.
作者 周孟 朱福喜
出处 《电子学报》 EI CAS CSCD 北大核心 2017年第4期1018-1024,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61272277)
关键词 极性分类 情感标签 半监督学习 co-training学习 polarity classification sentiment tag semi-supervised learning co-training learning
  • 相关文献

参考文献6

二级参考文献69

  • 1杨频,李涛,赵奎.一种网络舆情的定量分析方法[J].计算机应用研究,2009,26(3):1066-1068. 被引量:19
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 3姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 4Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [C]//Proc of 40th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, USA: ACL, 2002 :417-424.
  • 5Pang B, Lee L, Vaithyanathan S. Thumbs up? Sentiment classification using machine learning Techniques [C] //Proc of 2002 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2002: 79-86.
  • 6Riloff E, Wiebe J. Learning extraction patterns for subjective expressions [C] //Proc of 2003 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2003:105-112.
  • 7Yu H, Hatzivassiloglou V. Towards answering opinion questions: Separating facts from opinions and identifying the polarity of opinion sentences [C] //Proe of 2003 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2003: 129-136.
  • 8Kanayama H, Nasukawa T. Fully automatic lexicon expansion for domain-oriented sentiment analysis [C] //Proc of 2006 Conf on Empirical Methods in Natural Language Processing. Stroudsburg, USA: ACL, 2006:355-363.
  • 9Tang tluifeng, "Fan Songbo, Cheng Xueqi. A survey on sentiment detection of reviews [J]. Expert Systems with Applications, 2009, 36(7): 10760-10773.
  • 10Dave K, Lawrence S, Pennock D. Mining the peanut gallery: Opinion extraction and semantic classification of product reviews [C] //Proc of llth lnt World Wide Web Conf. New York: ACM, 2002:519-528.

共引文献639

同被引文献49

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部