期刊文献+

模拟含随机分布椭圆形夹杂弹性体的边界元法 被引量:2

BEM simulation of 2D solids with randomly distributed elliptic inclusions
原文传递
导出
摘要 为了模拟含随机分布椭圆形夹杂固体的等效力学特性 ,根据椭圆形夹杂积分区域的相似性 ,提出了求解此类问题的边界元计算方案。通过利用著名的有限元商用软件MSC.Marc和边界元程序对含有两个非常接近椭圆夹杂板材的对比计算分析 ,表明该文提出的边界元方案比有限元法具有更高的计算精度和计算效率。最后 ,对含有 5 0个随机分布椭圆夹杂的板材进行了计算分析 ,从而为长纤维状复合材料宏观等效力学特性的研究提供了可靠的数值模拟方法。 A new boundary element method (BEM) scheme was developed to simulate the effective mechanical properties of 2D solids with random elliptical inclusions by comparing the area of the elliptical inclusions. The predictions of the finite element software MSC.Marc were compared with those of the BEM scheme for a square sheet with two very close elliptic inclusions. The comparision showed that the BEM scheme was much more accurate and efficient than the FEM scheme. The BEM scheme was then used to successfully analyzed a square sheet with 50 randomly distributed elliptical inclusions. Thus, the BEM scheme can reliably simulate effective the macroscopic mechanical properties of long fibrous reinforced composite materials.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2002年第8期1091-1094,1116,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目 (19772 0 2 5 )
关键词 边界元法 椭圆夹杂 椭机分布 二维弹性 boundary element method elliptic inclusion randomly distributed 2D elasticity
  • 相关文献

参考文献1

二级参考文献3

  • 1谭国文.清华大学硕士学位论文[M].北京:清华大学工程力学系,1998..
  • 2姚振汉,力学与工程.杜庆华院士八十寿辰庆贺文集,1999年,331页
  • 3谭国文,硕士学位论文,1998年

同被引文献18

  • 1Greengrad L,Rokhlin V.A fast algorithm for particle simulations[J].J Comput Phys,1987,73:325-348.
  • 2WANG Haitao,YAO Zhenhan.A new fast multipole boundary element method for large scale analysis of mechanical properties in 3D particle-reinforced composites[J].Computer Modeling in Engineering & Sciences,2005,7(1):85-95.
  • 3Liu Y J,Nishimura N,Otani Y.A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model[J].ASME Journal of Applied Mechanics,2005,72(1):115-128.
  • 4Yoshida K.Applications of Fast Multipole Method to Boundary Integral Equation Method[D].Japan:Kyoto Univ,2001.
  • 5WANG Haitao,YAO Zhenhan,WANG Pengbo.On the preconditioners for fast multipole boundary element methods for 2D multi-domain elastostatics[J].Engineering Analysis with Boundary Elements,2005,29:673-688.
  • 6Guiggiani M.Formulation and numerical treatment of boundary integral equations with hypersingular kernels[C]∥Sladek V,Sladek J eds.Singular Integrals in Boundary Element Methods.Southampton:Computational Mechanics Publications,1998.
  • 7MO Zeyao,ZHANG Jinglin.Dynamic load balancing for short-range parallel molecular dynamics simulations[J].International Journal of Computer Mathematics,2002,79(2):165-177.
  • 8SUN Yudong,WANG Choli.Solving irregularly structured problems based on distributed object model[J].Parallel Computing,2003,29(11):1539-1562.
  • 9Qin Q H,Yu S W.Effective moduli of thermopiezoelectric material with microcavities[J].International Journal of Solids and Structures,1998,35:5085—5095.
  • 10Li Z H,Wang C,Chen C Y.Effective electromechanical properties of transversely isotropic piezoelectric ceramics with microvoids[J].Comp Mater Sci,2003,27:381—392.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部