期刊文献+

基于二次虚拟扩展的高分辨率波达方向估计方法

High resolution approach of direction-of-arrival estimation based on twice virtual extension
下载PDF
导出
摘要 为进一步提高天线阵波达方向估计的分辨率,在四阶量多重信号分类方法的基础上,提出一种高分辨率的波达方向估计方法.利用阵列接收数据的四阶矩量进行虚拟阵列扩展,再利用阵列接收数据的共轭进行虚拟阵列扩展,实现二次虚拟扩展;将扩展后的阵列导向矢量和协方差矩阵用于波达方向估计,与原阵列导向矢量和协方差矩阵相比,相当于构造了更多的虚拟阵元,并扩展了阵列的孔径.仿真结果表明:与四阶量多重信号分类等波达方向估计方法相比,所提出的方法在波达方向估计中成功概率更高,均方误差更低,具有更高的分辨率.所提方法通过二次虚拟扩展,构造了更多的虚拟阵元,有效地提高了天线阵波达方向估计的分辨率. In order to further improve the resolution of direction-of-arrival( DOA) estimation of antenna array,a high resolution approach of DOA estimation is proposed based on the fourth-order multiple signal classification( FOMUSIC) approach. First,the antenna array is extended through the fourth-order moment of the received data.Then,the antenna array is extended through the conjugate value of the received data. When the expanded steering vector and the expanded covariance matrix are used for DOA estimation instead of the original steering vector and the original covariance matrix,virtual array elements are formed and the aperture of array is extended. It is shown by simulation results that,compared to the FO-MUSIC approach,the proposed method has a higher probability of target resolution,lower root mean square error and higher resolution. Hence,more virtual array elements are formed by the proposed approach based on twice virtual extension,and the resolution of DOA estimation of antenna array is effectively improved.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第5期122-127,共6页 Journal of Harbin Institute of Technology
基金 国防预研项目(4010403020102 4010103020103)
关键词 波达方向估计 多重信号分类 四阶量法 虚拟阵列 分辨率 direction-of-arrival estimation multiple signal classification fourth-order statistics virtual array resolution
  • 相关文献

参考文献4

二级参考文献38

  • 1周祎,冯大政,刘建强.基于联合对角化的近场源参数估计[J].电子与信息学报,2006,28(10):1766-1769. 被引量:5
  • 2王鼎,吴瑛.基于改进遗传算法的矩阵联合对角化[J].电子与信息学报,2007,29(3):578-581. 被引量:3
  • 3吴洹,贾永康,保铮.基于累量的方向估计与阵列校正[J].电子学报,1997,25(4):77-81. 被引量:4
  • 4Li Xi-lin and Zhang Xian-da. Nonorthogonal joint diagonalization free of degenerate solution[J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1803-1814.
  • 5Wang Fu-xiang, Liu Zhong-kan, and Zhang Jun. A new joint diagonalization algorithm with application in blind source separation[J]. IEEE Signal Processing Letter, 2006, 13(1): 41-44.
  • 6Feng Da-zhang, Zhang Xian-da, and Bao Zheng. An efficient multistage decomposition approach for independent components[J]. Signal Processing, 2003, 83(1): 181-197.
  • 7Lie Su, Leyman A Ra, and Chew Yo H. Fourth-order and weighted mixed order direction-of-arrival estimators[J]. IEEE Signal Processing Letters, 2006, 12(11): 691-695.
  • 8Weissa A J and Friedlanderb B. Array processing using joint diagonalization[J]. Signal Processing, 1996, 50(3): 205-222.
  • 9Cardoso J F and Souloumiac A. Jacobi angles for simultaneous diagonalization[J]. SIAM Journal on Matrix Analysis and Applications. 1996, 17(1): 161-163.
  • 10Wax M and Sheinvald J. A least-squares approach to joint diagonalization[J]. IEEE Signal Processing Letters, 1997, 4(2): 52-53.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部