期刊文献+

薛定谔算子相关的黎斯位势的交换子的端点估计(英文)

Endpoint Estimates for Commutators of Riesz Potential Related to Schr?dinger Operators
原文传递
导出
摘要 对与薛定谔算子L=-△+V(·)相关的黎斯位势L^(-β/2),本文得到了交换子的端点型估计,即L^(-β/2)_b(f)(x)=b(x)L^(-β/2)(f)(x)-L^(-β/2)(bf)(x)是L^(d/β)(R^d)到BMO_L或BLO_L有界的,其中位势函数V(·)满足反H?lder不等式,b(x)∈BMO_θ(ρ). Let L-β/2 be the Riesz potential associated to the Schrhdinger operators L = -△+ V(· ) with V(· ) satisfying reverse Holder inequality. For a BMOθ(ρ) function b(x) on Rd, we show the boundedness of commutators L^(-β/2)b(f)(x)=b(x)L^(-β/2)(f)(x)-L^(-β/2)(bf)(x) from d Ld/ (R^d) to BMOL or BLOL.
作者 郭玉星
出处 《数学进展》 CSCD 北大核心 2017年第3期387-395,共9页 Advances in Mathematics(China)
关键词 薛定谔算子 交换子 黎斯位势 Schr5dinger operator commutators Riesz potential
  • 相关文献

二级参考文献16

  • 1Folland G B, Stein E M. Hardy Spaces on Homogeneous Groups. Math Notes 28. Princeton, New Jersey: Princeton Univ Press and Univ of Tokyo Press, 1982.
  • 2Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton, New Jersey: Princeton Univ Press, 1993.
  • 3bin C, Liu H. The BMO-type space BMOc associated with Schrodinger operators on Heisenberg group. Submitted.
  • 4Dziubanski J, Garrigos G, Martinez T, Torrea J, Zienkiewicz J. BMO spaces related to SchrSdinger operators with potentials satisfying reverse Holder inequality. Math Z, 2005, 249:329- 356.
  • 5Gao W, Jiang Y, Tang L. BLOc spaces and maximal Riesz transforms associated with Schrodinger operators. Acta Math Sinica (Chinese Series), 2009, 52(2): 1101 -1110.
  • 6Yang D, Yang Do, Zhou Y. Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrodinger operators. Potential Anal, 2009, 30:271 -300.
  • 7Yang D, Zhou Y. Localized Hardy spaces H1 related to admissible functions on RD-spaces and applications to SchrSdinger operators. Tran Amer Math Soc, 2011, 363:1197-1239.
  • 8Yang D, Yang Do, Zhou Y. Local BMO and BLO spaces on RD-spaces and applications to Schrodinger operators. Commun Pure Appl Anal, 2010, 9(3): 779- 812.
  • 9Dziubafiski J, Zienkiewicz J. Hardy space H1 associated to Schrodinger operators with potentials satisfying reverse H61der inequality. Rev Mat Iberoam, 1999, 15:279 -296.
  • 10Coifman R R, Rochberg R. Another chanracterization of BMO. Proc Amer Math Soc, 1980, 79:249-254.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部