摘要
对与薛定谔算子L=-△+V(·)相关的黎斯位势L^(-β/2),本文得到了交换子的端点型估计,即L^(-β/2)_b(f)(x)=b(x)L^(-β/2)(f)(x)-L^(-β/2)(bf)(x)是L^(d/β)(R^d)到BMO_L或BLO_L有界的,其中位势函数V(·)满足反H?lder不等式,b(x)∈BMO_θ(ρ).
Let L-β/2 be the Riesz potential associated to the Schrhdinger operators L = -△+ V(· ) with V(· ) satisfying reverse Holder inequality. For a BMOθ(ρ) function b(x) on Rd, we show the boundedness of commutators L^(-β/2)b(f)(x)=b(x)L^(-β/2)(f)(x)-L^(-β/2)(bf)(x) from d Ld/ (R^d) to BMOL or BLOL.
出处
《数学进展》
CSCD
北大核心
2017年第3期387-395,共9页
Advances in Mathematics(China)
关键词
薛定谔算子
交换子
黎斯位势
Schr5dinger operator
commutators
Riesz potential