期刊文献+

时变等离子体高功率微波频率上转换的粒子模拟 被引量:1

Particle-in-cell simulation for frequency up-conversion of high-power microwave in time-varying plasma
下载PDF
导出
摘要 基于电磁波与时变介质相互作用能够实现电磁波频率上转换的原理,通过粒子模拟(PIC)方法对电磁波与时变等离子体薄层相互作用进行模拟,实现了频率由2.45GHz提升至130GHz,功率转化效率约为0.39%。探究了等离子体参数(包括等离子体密度、有限的等离子体上升时间以及等离子体薄层厚度)对频率上转换的影响。模拟结果验证了等离子体密度决定上转换频率,与理论结果相符。模拟结果表明,等离子体薄层厚度越大,得到的上转换波的能量越大;等离子体的上升时间越小,上转换波的转换效率和频谱纯度越高。采用等离子体密度2×10^(20)cm^(-3),等离子体厚度1cm,等离子体上升时间0.04ns可以得到可观的130GHz上转换波输出。 The frequency up-conversion of an electromagnetic wave in a time-varying plasma has been simulated in this paper with particle-in-cell (PIC) method, and it transformed a 2.45 GHz source radiation into a 130 GHz radiation with the power conversion efficiency of around 0.39%. We also studied the effects of the plasma parameters including the plasma density, the finite rise time of ionization and the width of plasma slab. It is concluded that the frequency up-conversion of the output wave was mainly affected by the plasma density, which was consistent with the theoretical results. In addition, the simulation showed that the energy of the output wave would be lager with the increase of the width of plasma slab, and the conversion efficiency of the output wave and spectrum were much better when the plasma rise time was shorter. A considerable 130 GHz radiation could be obtained with the plasma density of 2×10^20 cm^-3, the plasma thickness of 1 cm, and the plasma rise time of 0.04 ns.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2017年第6期16-20,共5页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(51677145)
关键词 时变等离子体介质 频率上转换 粒子模拟 等离子体参数 time varying plasma medium frequency up conversion particle-in-cell plasma parameters
  • 相关文献

参考文献5

二级参考文献41

  • 1李永东,刘纯亮,王洪广.极坐标系下等离子体模拟的粒子推进算法[J].西安交通大学学报,2004,38(10):1065-1067. 被引量:1
  • 2李永东,刘纯亮,张殿辉,王建国.等离子体粒子模拟带电粒子推进算法校正[J].核技术,2005,28(4):269-272. 被引量:2
  • 3曹莉华,刘大庆,常文蔚,岳宗五,赵伊君.二维粒子模拟的多时标法[J].国防科技大学学报,1996,18(3):133-137. 被引量:7
  • 4Buneman O. Dissipation of currents in ionized media[J]. Phys Rev, 1959, 117(3):503-517.
  • 5Dawson J M. One-dimensional plasma model[J].Physics of Fluids, 1962, 5(4):445- 459.
  • 6Boswell R W, Morey I J. Self consistent simulation of a parallel plate RF discharge[J]. Appl Ph3,s Left, 1988, 52(1) :21-23.
  • 7Vahedi V, Surendra M A. Monte Carlo collision model for the particle in cell method: applications to argon and oxygen discharges[J]. Computer Physics Communications, 1995, 87( 1 2) : 179-198.
  • 8Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: Adam Hilger, 1991.
  • 9Worts E J, Kovaleski D K. Particle-in cell model of a laser-triggered spark gap[J].IEEE Tranactions on Plasma Science, 2006, 34(5) : 1640-1645.
  • 10Li Yongdong, He Feng, I.iu Chunliang. A volume weighting cloud in-cell model for simulation of axial symmetrical plasmas[J]. Plasma Science and Technology, 2005, 7(1):2653-2656.

共引文献32

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部