摘要
The wind speed and direction measured over six months by a Doppler wind lidar(Windcube-8)were compared with wind cup anemometers mounted on the 325-m Beijing meteorological tower(BMT).Five mountain–plain wind cases characterized by wind direction shear were selected based on the high-frequency(1.1 s)wind profile of the Windcube-8 and analyzed with 1-h mesoscale surface weather charts.Also analyzed was the relationship between insitu PM_1(aerodynamic diameter≤1μm)concentrations measured at 260 m on BMT and the carrier-to-noise ratio(CNR)of the co-located Windcube-8.The results showed that the 10-min averaged wind speed and direction were highly correlated(R=0.96–0.99)at three matched levels(80,140,and 200 m).The evening transition duration was1–3 h,with an average wind speed of 1 m s^(–1) at 80 m above the ground.In addition,there was a zero horizontalwind-speed zone along the wind direction shear line,and in one case,the wind speed was characterized by a Kelvin–Helmholtz gravity wave.The variability of the PM_1 concentrations was captured by the CNR of the Windcube-8 in a fair weather period without the long-range transport of dust.
The wind speed and direction measured over six months by a Doppler wind lidar(Windcube-8)were compared with wind cup anemometers mounted on the 325-m Beijing meteorological tower(BMT).Five mountain–plain wind cases characterized by wind direction shear were selected based on the high-frequency(1.1 s)wind profile of the Windcube-8 and analyzed with 1-h mesoscale surface weather charts.Also analyzed was the relationship between insitu PM_1(aerodynamic diameter≤1μm)concentrations measured at 260 m on BMT and the carrier-to-noise ratio(CNR)of the co-located Windcube-8.The results showed that the 10-min averaged wind speed and direction were highly correlated(R=0.96–0.99)at three matched levels(80,140,and 200 m).The evening transition duration was1–3 h,with an average wind speed of 1 m s^(–1) at 80 m above the ground.In addition,there was a zero horizontalwind-speed zone along the wind direction shear line,and in one case,the wind speed was characterized by a Kelvin–Helmholtz gravity wave.The variability of the PM_1 concentrations was captured by the CNR of the Windcube-8 in a fair weather period without the long-range transport of dust.
基金
Supported by the National Natural Science Foundation of China(91544221,41571130024,41505091,and 41575124)
Key Project of the Chinese Academy of Sciences(XDB05030301)
LAPC(State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry)Free Exploration Fund