期刊文献+

自适应贪婪搜索的人工蜂群算法 被引量:1

Adaptive greedy searching artificial bee colony algorithm
下载PDF
导出
摘要 人工蜂群算法是受蜜蜂觅食行为启发提出的一种群体智能优化算法,为了增强人工蜂群算法的开采性能,本文更好地模拟了观察蜂的觅食行为,提出一种自适应贪婪搜索的改进人工蜂群算法,在观察蜂阶段,搜索半径自适应减小,成功搜索某食物源之后可以贪婪地再次搜索该食物源,以充分利用成功的搜索经验,减小搜索盲目性。在10个标准测试函数上的实验表明,改进算法的收敛精度超过ABC和最近提出的q ABC算法,而计算复杂度低于这两种算法。 Artificial bee colony (ABC) algorithm inspired by the foraging behaviour of the honey bees is one of the swarm intelli-gence based optimization techniques. Adaptive greedy search ABC ( AGS-ABC) is a new- version of ABC algorithm in order to enhance the exploitation performance of ABC, which models the behavior of onlooker bees more accurately.In the phase of onlooker bees, the search radius shrinks adaptively and the onlooker bees can search the same food source again after a successful search on the food source in order to make the best of successful search experience and diminish the blind search.Experiments on 10 bench-mark functions show that AGS-ABC outperfor^ms ABC and recently developed quick ABC(qABC) in terms of convergence accuracy and have less complexity compared to the two algorithms.
作者 杜振鑫 韩德志 曾亮 DL Zhenxin HAN Dezhi ZENG Liang(School of Computer Information Engineering, Hanshan Normal University, Chaozhou, Guangdong 521041, China College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China School of Mathematical Sciences , Xiamen University , Xiamen , Fujian 361005, China)
出处 《燕山大学学报》 CAS 北大核心 2017年第2期183-188,共6页 Journal of Yanshan University
基金 国家自然科学基金资助项目(61373028)
关键词 人工蜂群算法 贪婪搜索 自适应策略 计算复杂度 artificial bee colony greedy search adaptive strategy computational complexity
  • 相关文献

参考文献6

二级参考文献81

  • 1成媛媛,全惠云.解非线性方程自适应变搜索区间的遗传算法[J].计算机工程与应用,2005,41(21):58-60. 被引量:5
  • 2张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 3高飞,童恒庆.一类求解方程根的改进粒子群优化算法[J].武汉大学学报(理学版),2006,52(3):296-300. 被引量:8
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 5Yucek T, Arslan H. A survey of spectrum sensing algorithms forcognitive radio application [J]. IEEE Communication Surveys &Tutorials, 2009,11 (1): 116-130.
  • 6Akyildiz IF, Lee W Y, Vuran M C,et al.. Next generation dynamicspectrum access cognitive radio wireless networks: a survey [J].Computer Networks Journal, 2006,50 (13): 2127-2159.
  • 7NeelJ, Reed J, Mackenzie A. Cognitive radio network performanceanalysis [M] //Fette B. Cognitive Radio Technology. Amsterdam:Elsevier, 2006: 1-15.
  • 8Newman T R, Barker B A, Wyglimski A M, et al.. Cognitiveengine implementation for wireless multi-carriers transceivers [J].Wiley Wireless Communications and Mobile Computing, 2007,7(9): 1129-1142.
  • 9Rondeau T W, Le B, Maldonado D, et al.. Cognitive radioformulation and implementation [C] //The first International Con-ference on Cognitive Radio Oriented Wireless Networks and Com-munication, 2006: 1-10.
  • 10Hauris J F. Genetic algorithm optimization in a cognitive radio forautonomous vehicle communications [J]. IEEE International Sym-posium on Computational Intelligence in Robotics and Automa-tion, 2007,20 (23): 427-431.

共引文献45

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部