期刊文献+

PageRank模型的改进及微博用户影响力挖掘算法 被引量:7

IMPROVEMENT OF PAGERANK MODEL AND MINING ALGORITHM OF MICROBLOG USER INFLUENCE
下载PDF
导出
摘要 随着Web技术的发展,微博逐渐成为当下最流行的社交平台之一。微博中用户影响力计算是相关研究中的焦点问题。通过对PageRank模型的改进,提出一种新的用户影响力挖掘算法PR4WB(PageRank for Micro Blogs),解决了传统的PageRank算法由于页面权威值的等分传递带来的潜在误差过大的问题。PR4WB算法在考虑微博中用户关系的同时,利用社会网络概念将自身的活跃度、博文质量及可信性加以关联,形成动态的评价模型。基于Twitter数据的实验表明,PR4WB算法能更加准确、客观地反映出用户的实际影响力。 With the development of Web technology , microblog has become one of the most popular social platforms.The calculation of user influence in microblog is the focus of related research. Through the improvement of the PageRankmodel , a new user influences mining algorithm PR4WB (PageRank for Microblog) is proposed to solve the problem that the traditional PageRank algorithm has too much potential error due to the transfer of page authority value. PR4WBalgorithm takes into account the user relationship in microblog while using the concept of social network to link itsactivity , blog quality and credibility to form a dynamic evaluation model. Experiments based on Twitter data show that ,PR4WB algorithm can more accurately and objectively reflect the user, s actual influence.
出处 《计算机应用与软件》 2017年第5期28-32,37,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61273293)
关键词 用户影响力 社会网络 微博 推特 PAGERANK算法 User influence Social network Microblog Twitter PageRank algorithm
  • 相关文献

参考文献3

二级参考文献117

  • 1段宇锋.网络信息资源老化规律研究[J].图书情报知识,2005,22(4):28-31. 被引量:40
  • 2中国互联网络信息中心(CNNIC).中国互联网络发展状况统计报告[EB/OL].http://www.cnnic.cn/html/Dir/2010/01/15/5767.htm,2010.01.
  • 3Kirriemuir J W,Willett P.Identification of duplicate and near-duplicate full-text records in database search outputs using hierarchic cluster analysis[J].Program-automated Library and Information,1995,29 (3):241-256.
  • 4Semiocast , Twitter reaches half a billion accounts more than 140 million in the U. S [EB/OL]. (2012-07-30)[2013-07- 23]. http://semiocast. com/publications/2012_07 _30_ Twitter_ reaches_halCa_billion_accounts_140m_in_the_ US.
  • 5Kwak H, Lee C, Park H, et al. What is Twitter, A social network or a news media [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 591-600.
  • 6Comscore. Mobile driving majority of growth for leading EU5 social networks [EB/OLJ. (2012-05-18) [2013-07- 23]. http://www.comscoredatamine.com/2012/05/mobile_ driving , majority _ f _ growth _ for _ leading _ eu5 _ social _ networks.
  • 7Sakaki T, Okazaki M, Matsuo Y. Earthquake shakes Twitter users: Real-time event detection by social sensors [C] //Proc of the 19th Int Conf on World Wide Web (WWW·10). New York: ACM, 2010: 851-860.
  • 8Popescu A M. Pennacchiotti M. Detecting controversial events from Twitter [C] !!Proc of the 19th ACM Int Conf on Information and Knowledge Management (CIKM·10). New York: ACM. 2010: 1873-1876.
  • 9Weng J. Lee B S. Event detection in Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (ICWSM'l1). Menlo Park. CA: AAAI. 2011: 401-408.
  • 10Becker H, Naaman M, Gravano L. Beyond trending topics: Real-world event identification on Twitter [C] //Proc of the 5th Int AAAI Conf on Weblogs and Social Media (lCWSM'l1). Menlo Park. CA: AAAI. 2011: 438-441.

共引文献126

同被引文献66

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部