期刊文献+

基于改进ORB特征检测的全景视频拼接 被引量:7

PANORAMIC VIDEO STITCHING METHOD BASED ON IMPROVED ORB FEATURE DETECTION
下载PDF
导出
摘要 针对全景视频拼接中算法复杂度高且拼接后的视频存在拼接裂缝和"GHOST"现象的问题,提出一种基于改进ORB特征检测的全景视频拼接方法。首先采用多尺度空间来检测特征点以及对检测参数进行设置,使得ORB算子具有尺度不变性且分布均匀;然后采用Hamming距离进行特征匹配并采用RANSAC算法去除误匹配点;最后通过采用复杂度较低的动态规划算法找到最佳缝合线,并对拼接后的图像采用泊松融合进行平滑处理。将Ladybug全景摄像机拍摄的1帧兰州西科站全景视频图像进行仿真实验。仿真结果表明,该全景视频拼接方法在实时性方面表现优异,对存在的拼接裂缝和"GHOST"现象有很好的抑制作用。 Aiming at the high complexity of the panoramic video stitching algorithm and the problem of stitching cracks and 'GHOST'phenomenon,a panoramic video stitching method based on improved ORB feature detection is proposed. Firstly,the multi-scale space is used to detect the feature points and to set the detection parameters,so that the ORB operators are scale invariant and evenly distributed. Then Hamming distance is used for feature matching and RANSAC algorithm is used to remove the mismatch point. Finally,the optimal stitching crack is found by using the low complexity dynamic programming algorithm,and the stitching image is smoothed by Poisson fusion. We take 1 frame panoramic video image of Lanzhou West Railway Station, shot by Ladybug panoramic camera, for simulation experiments. The simulation results show that the panoramic video stitching method is excellent in real-time performance,and has good inhibitory effect on the stitching cracks and 'GHOST'phenomenon.
出处 《计算机应用与软件》 2017年第5期182-188,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61162016 61562057) 甘肃省自然科学基金项目(145RJZA080) 甘肃省国际科技合作项目(144WCGA162) 兰州市人才创新创业科技计划项目(2014-RC-7)
关键词 ORB算法 全景视频拼接 特征检测 图像匹配 动态规划 泊松融合 ORB algorithm Panoramic video stitchingPoisson fusion Feature detection Image matching Dynamic programming
  • 相关文献

参考文献4

二级参考文献53

  • 1宋克欧,黄凤岗,朱铁一.二值图像目标质心快速下降迭代搜索算法[J].模式识别与人工智能,1994,7(2):143-149. 被引量:8
  • 2金海燕,刘芳,焦李成.基于多尺度对比度塔和方向滤波器组的图像融合[J].电子学报,2007,35(7):1295-1300. 被引量:10
  • 3Dai M, Baylou P, Najim M. An efficient algorithm for computation of shape moments from run-length codes or chain codes[J]. Pattern Recognition, 1992, 25(10): 1119~1128
  • 4Li B C. A new computation of geometric moments[J]. Pattern Recognition, 1993, 26(1): 109~113
  • 5Philips W. A new fast algorithm for moment computation[J]. Pattern Recognition, 1993, 26(11): 1619~1621
  • 6Li B C, Shen J. Fast computation of moment invariants[J]. Pattern Recognition, 1991, 24(8): 807~813
  • 7Yang Luren, Albregtsen Fritz. Fast and exact computation of Cartesian geometric moments using discrete Green's theorem[J]. Pattern Recognition, 1996, 29(7): 1061~1073
  • 8Zakaria M F, Vroomen L J, Zsombor-Murray P L A,et al. Fast algorithm for the computation of moment invariants[J]. Pattern Recognition, 1987, 20(6): 639~643
  • 9Fu C W, Yen J C, Chang S. Calculation of moment invariants via Hadamard transform[J]. Pattern Recognition, 1993, 26(2): 287~294
  • 10Belkasim S, Kamel Mohamed. Fast computation of 2-D image moments using biaxial transform[J]. Pattern Recognition, 2001, 34(9): 1867~1887

共引文献159

同被引文献60

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部