期刊文献+

同步对称双栅InGaZnO薄膜晶体管电势模型研究 被引量:3

Analytical channel potential model of amorphous InGaZnO thin-film transistors with synchronized symmetric dual-gate
下载PDF
导出
摘要 研究了同步对称双栅氧化铟镓锌薄膜晶体管(InGaZnO thin film transistors,IGZO TFTs)的沟道电势,利用表面电势边界方程联合Lambert函数推导得到了器件沟道电势的解析模型.该模型考虑了IGZO薄膜中存在深能态及带尾态等缺陷态密度,能够同时精确地描述器件在亚阈区(sub-threshold)与开启区(above threshold)的电势分布.基于所提出的双栅IGZO TFT模型,讨论了不同厚度的栅介质层和有源层时,栅-源电压对双栅IGZO TFT的表面势以及中心势的调制效应.对比分析了该模型的计算值与数值模拟值,结果表明二者具有较高的符合程度. Oxide indium gallium zinc thin film transistor (IGZO TFT) is a promising candidate for mass production of nextgeneration flat panel display technology with high performance. This is due to many merits of IGZO TFTs, such as high mobility, excellent uniformity over large area, and low cost. In recent years, IGZO TFTs with dual gate structure have attracted enormous attention. Compared with the conventional single gate IGZO TFTs, the dual gate IGZO TFTs have many advantages including increased driving ability, reduced leakage current, and improved reliability for both negative biasing stressing and positive biasing stressing. Although the measurement results of fabricated circuit samples have proven that dual gate IGZO TFTs are beneficial for the integration of digital circuit and active matrix light emitting display with in-array or external compensation schematics, there has been no proper analytic model for dual gate IGZO TFTs to date. As the analytic model is crucial to circuit simulations, there are great difficulties in circuit designs by using dual gate IGZO TFTs. Although there are some similarities between the operating principal of the dual gate IGZO TFTs and that of the dual gate silicon-on-insulator devices, the complexity of conducting mechanism of IGZO TFTs is increased due to the existence of sub-gap density of states (DOS) in the IGZO thin film. In this paper, an analytical channel potential model for IGZO TFT with synchronized symmetric dual gate structure is proposed. Gaussian method and Lambert function are used for solving the Poisson equation. The DOS of IGZO thin film is included in the proposed model. Analytical expressions for the surface potential (φs) and central potential (T0) of the IGZO film are derived in detail. And the proposed channel potential model is valid for both sub-threshold and above-threshold region of IGZO TFTs. The influences of geometry of dual-gate IGZO TFT, including thickness values of gate oxide layer and IGZO layer, on the device performance are thoroughly discussed. It is found that in the case of small gate-to-source voltage (VGs), as the conducting of IGZO layer is weak, both φs and T0 increase linearly with the increase of VGS due to the increase of voltage division between the oxide and IGZO layer. However, the increase of φs and φ0 starts to saturate once VGs is larger than threshold voltage due to the shielding of electrical field by the induced electron layer of IGZO surface. With the evolution of VGS, the calculated results of Us and T0 by using the proposed dual gate IGZO TFT model are in good agreement with the numerical results by technology computer aided design simulation method. Therefore, the proposed model is promising for new IGZO TFT electronics design automation tool development.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2017年第9期267-273,共7页 Acta Physica Sinica
基金 湖南省科技计划(批准号:2015JC3041)资助的课题~~
关键词 双栅薄膜晶体管 氧化铟镓锌 沟道电势 解析模型 dual-gate thin film transistor, InGaZnO, channel potential, analytic model
  • 相关文献

同被引文献4

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部