期刊文献+

A 220 GHz dynamic frequency divider in 0.5μm InP DHBT technology 被引量:1

A 220 GHz dynamic frequency divider in 0.5μm InP DHBT technology
原文传递
导出
摘要 A high performance 3 inch 0.5 μm InP DHBT technology with three interconnecting layers has been developed.The epitaxial layer structure and geometry parameters of the device were carefully studied to get the required performances.The 0.5 × 5 μm^2 InP DHBTs demonstrated ft = 350 GHz,f(max) = 532 GHz and BV(CEO) = 4.8 V,which were modeled using Agilent-IIBT large signal model.As a benchmark circuit,a dynamic frequency divider operating from 110 to 220 GHz has been designed,fabricated and measured with this technology.The ultra-high-speed 0.5 μm InP DHBT technology offers a combination of ultra-high-speed and high breakdown voltage,which makes it an ideal candidate for next generation 100 GHz+ mixed signal integrated circuits. A high performance 3 inch 0.5 μm InP DHBT technology with three interconnecting layers has been developed.The epitaxial layer structure and geometry parameters of the device were carefully studied to get the required performances.The 0.5 × 5 μm^2 InP DHBTs demonstrated ft = 350 GHz,f(max) = 532 GHz and BV(CEO) = 4.8 V,which were modeled using Agilent-IIBT large signal model.As a benchmark circuit,a dynamic frequency divider operating from 110 to 220 GHz has been designed,fabricated and measured with this technology.The ultra-high-speed 0.5 μm InP DHBT technology offers a combination of ultra-high-speed and high breakdown voltage,which makes it an ideal candidate for next generation 100 GHz+ mixed signal integrated circuits.
出处 《Journal of Semiconductors》 EI CAS CSCD 2017年第5期82-87,共6页 半导体学报(英文版)
关键词 INP heterojunction bipolar transistor dynamic frequency divider InP heterojunction bipolar transistor dynamic frequency divider
  • 相关文献

参考文献8

二级参考文献45

  • 1Griffith Z, Dahlstrom M, Rodwell M J W, Urteaga M, Pierson R, Rowell P, Brar B, Lee S, Nguyen N and Nguyen C 2004 Bipolar/BiCMOS Circuits and Technology Meeting (Montreal, Canada 13-14 September 2004) p 176
  • 2Paidi V, Griffith Z, Wei Y, Dahlstrom M, Parthasarathy N, Urteaga M and Rodwell M J W 2004 IEEE Radio Frequency Integrated Circuits Symposium(Texas, USA 6-8 June 2004) p 189
  • 3Sugeng B R A, Wei C J and Hwang J C M 1993 IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices & Circuits (Cornell University, USA 2-4 August 1993) p 52
  • 4Dahlstrom M 2003 PhD Thesis (University of California, Santa Barbara, USA)
  • 5Jin Z, Su Y B, Cheng W, Liu X Y, Xu A H and Qi M 2008 Chin. Phys. Lett. 25 2683
  • 6Jin Z and Liu X Y 2008 Sci. Chin. E 51 (accepted)
  • 7Griffith Z, Dahlstrom M, Urteaga M, Rodwell M J W, Fang X M, Lubyshev D, Wu Y, Fastenau J M and Liu W K 2004 IEEE Electron. Device Lett. 25 250
  • 8Kurishima K, Ida M and Watanabe M 2002 International Conference on Solid State Devices and Materials (Nagoya, Japan, 17-19 September 2002) p 272
  • 9Kim Y M, Dahlstrom M, Lee S, Rodwell M J W and Gossard A C 2002 IEEE Electron. Device Lett. 23 297
  • 10Jin Z, Prost W, Neumann S and Tegude F J 2004 Appl. Phys. Lett. 84 2910

共引文献6

同被引文献9

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部