期刊文献+

钙处理对高碳铝镇静钢中夹杂物的影响 被引量:27

Effect of calciumtreatment on non-metallic inclusions in high carbon aluminum killed steel
原文传递
导出
摘要 为了研究高碳含硫铝镇静钢中夹杂物的控制策略,利用ASPEX自动扫描电镜研究了钙处理对高碳铝镇静钢中夹杂物形貌、成分等特征的影响。结果表明,钙处理后夹杂物并未由LF精炼结束时的MgO·Al_2O_3转变为低熔点钙铝酸盐,而是转变为x(MgO·Al_2O_3)·(1-x)CaS复杂成分体系,夹杂物中MgO/Al_2O_3的质量比维持在1∶3不变。原因在于,钢液中w([S])/w(T[O])比较高,导致钙主要与硫结合生成CaS,而较少参与MgO·Al_2O_3的改性;精炼渣碱度低使得钙无法还原MgO。在此基础上对钙处理时夹杂物的生成与转变机理进行了讨论。 Influence of calciumtreatment on the composition and morphology of non-metallic inclusions in high carbon aluminum killed steel was studied by automatic SEM(ASPEX).The results indicated that inclusions transformed from MgO·Al2O3 spinel at LF ending to complicated x(MgO·Al2O3)·(1-x)Ca S inclusions after calciumtreatment,instead of low-melting calcium-aluminates.The mass ratio of MgO/Al2O3 in inclusions which was nearly 1∶3 maintained almost constant during calciumtreatment.Because of w([S])/w(T[O]) in steel being so high,calcium combined with sulfur to generate Ca S and didn't modify MgO·Al2O3inclusions.On the other hand,due to the basicity of refining slag being so low,calcium in steel cannot reduce MgO of MgO·Al2O3inclusions.On this basis,the generation and evolution mechanisms of inclusions during calciumtreatment were discussed.
出处 《钢铁》 CAS CSCD 北大核心 2017年第4期25-30,共6页 Iron and Steel
关键词 高碳铝镇静钢 钙处理 夹杂物 CAS 镁铝尖晶石 high carbon aluminum killed steel calciumtreatment inclusion CaS MgO·Al2O3 spinel
  • 相关文献

参考文献2

二级参考文献21

  • 1Murakami Y, Nomoto T, Ueda T. Factors influencing the mecha- nism of superlong fatigue failure in steels[J]. Fatigue and Frac- ture of Engineering Materials and Structure, 1999,22(7): 581.
  • 2Murakami Y, Yokoyama N, Nagata J. Mechanism of fatigue fail- ure in ultra- long life regime[J]. Fatigue and Fracture of Engi- neering Materials and Structures, 2002,25(8): 735.
  • 3Murakami Y, Matsunaga H. Effect of hydrogen on high cycle fa- tigue properties of stainless steels and other steels used for fuel cell system[C]//Proceedings of the Third International Confer- ence on Very High Cycle Fatigue. Kyoto: [s.n.], 2004: 322.
  • 4Gubenko S, Proidak Y, Kozlovsk Y, et al. Influence of nonmetal- lic inclusions on microbreaks formation in wheel steel and rail- way wheels[J]. Transport Problems, 2008, 3(3): 77.
  • 5Dedmon S, Pilch J M.The development of residual micro-stress- es surrounding various inclusion types in wheel steel[C]//Pro- ceedings of ASME 2009 Rail Transportation Division Fall Con- ference. Texas: [s.n.], 2009.. 1.
  • 6Tang Y. Effect of slag composition on fatigue life of high speed wheel steel advanced materials research[J]. Advanced Materials Research, 2013,675: 264.
  • 7Keskinkilic E. Sulfide-type inclusion morphologies of a Ca-treat- ed hot-rolled wheel steel[J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2011,111 : 417.
  • 8YANG W, ZHANG L F, WANG X H, et al. Characteristics of in- clusions in low carbon Al-killed steel during ladle furnace refin- ing and calcium treatment[J]. ISIJ Int, 2013,53(8): 1401.
  • 9The Japan Society for the Promotion of Science. Steelmaking da- ta sourcebook[C]//The 19th Committee on Steelmaking. New York: Gordon and Breach Science Publishers, 1988:119.
  • 10GUO J, CHENG S S, CHENG Z J. Mechanism of non-metallic inclusion formation and modification and their deformation dur- ing compact strip production (CSP) process for aluminum-killed steel[J]. ISIJ Int, 2013,53(12), 2142.

共引文献45

同被引文献254

引证文献27

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部