摘要
对光正交码(OOC)构造的关注源于它在光码分多址网络中有许多应用.截至目前,对于码重为W∈{{3,4},{3,5},{3,6},{4,5},{4,6]}的变重量光正交码的构造已经取得许多结果.然而,对于码重为W={3,7}的变重量光正交码的具体构造非常的少.给出一系列新的最优变重量光正交码(33p,{3,7},1,{4/5,1/5})-OOC的具体构造,对于任何素数p≡3(mod 4)且p≥7.
Constructing optical orthogonal codes (OOC) cause for many researchers concern because it has many applications in the optical code division multiple access (OCDMA) net- work. So far, much works have been devoted to optimal variable-weight (n, W, 1, Q)-OOC with W e {{3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}}. However, explicit constructions of optimal (n, W, 1, Q)-OOC with W = {3, 7} are very few. In this paper, an infinite class of explicit constructions of new optimal variable-weight (33p, {3, 7}, 1, {4/5,1/5))-OOC are presented, for any prime p ---- 3 (mod 4) and p 〉 7.
出处
《数学的实践与认识》
北大核心
2017年第8期154-160,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(61170308)
广西自然科学基金(2013GXNSFAA019022)
广西高校科研项目(2013YB246)
百色学院科研基金项目(2012KB01)
关键词
常重量光正交码
变重量光正交码
循环填充
二次剩余
constant-weight optical orthogonal codes
variable-weight optical orthogonalcodes
cyclic packing
quadratic residue