期刊文献+

衡阳方言孤立词识别研究

Isolated Word Recognition of Hengyang Dialect
下载PDF
导出
摘要 目前,汉语识别已经取得了一定的研究成果.但由于中国的地域性差异,十里不同音,使得汉语识别系统在进行方言识别时识别率低、性能差.针对语音识别系统在对方言进行识别时的缺陷,构建了基于HTK的衡阳方言孤立词识别系统.该系统使用HTK3.4.1工具箱,以音素为基本识别单元,提取39维梅尔频率倒谱系数(MFCC)语音特征参数,构建隐马尔可夫模型(HMM),采用Viterbi算法进行模型训练和匹配,实现了衡阳方言孤立词语音识别.通过对比实验,比较了在不同因素模型下和不同高斯混合数下系统的性能.实验结果表明,将39维MFCC和5个高斯混合数与HMM模型结合实验时,系统的性能得到很大的改善. At present, Chinese speech recognition has made some achievements. However, due to regional differences in China, different place has different dialect, the Chinese recognition system has low recognition rate and poor performance in the dialect recognition. In order to solve the shortcomings of speech recognition system in dialect recognition, an isolated word recognition system of Hengyang dialect based on HTK is proposed. This method constructs the Hidden Markov Models (HMM), using phoneme as the basic recognition unit and using the HTK3.4.1 toolbox to extract the speech feature parameters of 39-dimensional Mel frequency cepstral coefficients (MFCC). Viterbi algorithm is used to train and match the model to achieve the isolated word speech recognition system of Hengyang dialect. The system's performances are compared under the different phoneme models and different Gaussian mixture numbers. The experimental results show that the system performance can be greatly improved by combining the 39-dimensional MFCC with 5 Gauss mixed numbers and HMM model.
出处 《计算机系统应用》 2017年第5期247-252,共6页 Computer Systems & Applications
关键词 HTK 隐马尔可夫模型 衡阳方言 梅尔频率倒谱系数 VITERBI算法 Hidden Markov Model Toolkit(HTK) Hidden Markov ModeI(HMM) Hengyang dialect Mel FrequencyCepstral Coefficients (MFCC) Viterbi algorithm
  • 相关文献

参考文献6

二级参考文献23

  • 1陆绍尊.普米语概况[J].民族语文,1980(4):58-73. 被引量:5
  • 2孙宁,孙劲光,孙宇.基于神经网络的语音识别技术研究[J].计算机与数字工程,2006,34(3):58-61. 被引量:9
  • 3石现峰,张学智,张峰.基于HTK的语音识别系统设计[J].计算机技术与发展,2006,16(10):37-38. 被引量:23
  • 4王欣,罗代升,王正勇.基于改进谱减算法的语音增强研究[J].成都信息工程学院学报,2007,22(2):201-204. 被引量:12
  • 5Young S, Evermann G, Gales M.The HTK Book. Cambridge UniversityEngineering Department. Version 3.1, 2001.40- 120.
  • 6牛景涛.基于DSP实现的数字信号处理技术研究[D].西安:西北工业大学,2006.
  • 7张雄伟.现代语音处理技术及应用[M]北京:机械工业出版社,2003.
  • 8赵力.语音信号处理[M]北京:机械工业出版社,2003.
  • 9I.Katunobu,Y.Mikio,T.Kazuya,M.Tatsuo,K.Tetsunori,S.Kiyohiro,and I.Shuichi. JNAS:Japanese speechcorpus for largevocabulary continuousspeechre cognitionre search[J].Journal of the Acoustical Society of Japan(E),1999,(03):119-206.
  • 10宗成庆.统计自然语言处理[M].2版.北京:清华大学出版社,2007.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部