期刊文献+

Microstructural Evolution of Nb–V–Mo and V Containing TRIP-assisted Steels during Thermomechanical Processing 被引量:8

Microstructural Evolution of Nb–V–Mo and V Containing TRIP-assisted Steels during Thermomechanical Processing
原文传递
导出
摘要 The microstructural evolution and precipitation behaviour of Nb–V–Mo and single V containing transformation induced plasticity assisted steels were investigated during thermomechanical processing. A plane strain compression testing machine was used to simulate the thermomechanical processing. Microstructures were characterised by optical microscopy, scanning-transmission electron microscopy and microanalysis, and X-ray diffraction analysis, and Vickers hardness was obtained from the deformed specimens. The resulting microstructure of both Nb–V–Mo and V steels at room temperature primarily consisted of an acicular/bainitic ferrite, retained austenite and martensite surrounded by allotriomorphic ferrite.The TEM analysis showed that a significant number of Nb(V,Mo)(C,N) precipitates were formed in the microstructure down to the finishing stage in Nb–V–Mo steel(i.e. 830℃). It was also found that the V(C,N)precipitation primarily occurred in both ferrite and deformed austenite below the finishing stage. The results suggested that Nb–Mo additions considerably increased the temperature stability of microalloy precipitates and controlled the microstructural evolution of austenite. However, the microalloy precipitation did not cause a significant precipitation strengthening in both Nb–V–Mo and V steels at room temperature. The microstructural evolution and precipitation behaviour of Nb–V–Mo and single V containing transformation induced plasticity assisted steels were investigated during thermomechanical processing. A plane strain compression testing machine was used to simulate the thermomechanical processing. Microstructures were characterised by optical microscopy, scanning-transmission electron microscopy and microanalysis, and X-ray diffraction analysis, and Vickers hardness was obtained from the deformed specimens. The resulting microstructure of both Nb–V–Mo and V steels at room temperature primarily consisted of an acicular/bainitic ferrite, retained austenite and martensite surrounded by allotriomorphic ferrite.The TEM analysis showed that a significant number of Nb(V,Mo)(C,N) precipitates were formed in the microstructure down to the finishing stage in Nb–V–Mo steel(i.e. 830℃). It was also found that the V(C,N)precipitation primarily occurred in both ferrite and deformed austenite below the finishing stage. The results suggested that Nb–Mo additions considerably increased the temperature stability of microalloy precipitates and controlled the microstructural evolution of austenite. However, the microalloy precipitation did not cause a significant precipitation strengthening in both Nb–V–Mo and V steels at room temperature.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第4期311-320,共10页 材料科学技术(英文版)
关键词 Microalloyed TRiP-assisted steel Thermomechanical processing Precipitation behaviour Microstructural evolution Microalloyed TRiP-assisted steel Thermomechanical processing Precipitation behaviour Microstructural evolution
  • 相关文献

同被引文献36

引证文献8

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部