期刊文献+

暗能量背景下黑洞的全息相变 被引量:1

Holographic phase transition for a black hole in the background with dark energy
原文传递
导出
摘要 在暗能量背景下,研究了黑洞的热力学熵和纠缠熵的相结构.分别讨论了黑洞的电荷和暗能量态参数对黑洞相结构的影响.对于固定的暗能量态参数,当电荷的值增大时,黑洞热力学熵和纠缠熵的相结构与范德瓦尔斯相变的相结构完全类似,即黑洞先后经历一阶相变、二阶相变,最后达到稳定态.对于固定的电荷,当暗能量态参数增大时,黑洞热力学熵和纠缠熵的相结构并不完全类似.特别是,纠缠熵随暗能量态参数的变化与热力学熵的变化趋势完全相反.相同的是,当暗能量态参数增大时,在纠缠熵-温度平面和热力学熵-温度平面,黑洞都经历一阶相变和二阶相变.对于热力学熵和纠缠熵,发现在一阶相变的不稳定区域,麦克斯韦的等面积法则始终成立,在二阶相变临界点附近,热容的临界指数都是2/3. In the background with dark energy, we investigate the phase structure of thermodynamic entropy and entanglement entropy. We investigate respectively the effect of the charge and state parameters of the dark energy on the phase structure of the black hole. For a fixed state parameter of dark energy, as the value of the charge increases, the phase structures of the thermodynamical entropy and the entanglement entropy are similar as that of the Van der Waals phase transition. That is, the black hole undergoes the first order phase transition and second order phase transition successively and reaches to a stable state at last. For a fixed charge, as the state parameter of dark energy increases, the phase structures of the thermodynamical entropy is not similar to the entanglement entropy. Especially, the tendency of the change of entanglement entropy with respect to the state parameter is opposite to the thermodynamic entropy. The same is that the black hole undergoes the first order phase transition and second order phase transition successively as the state parameter of dark energy increases. For the thermodynamics entropy and entanglement entropy, we find Maxwell's equal area law holds for the unstable region of the first order phase transition, and the critical exponent of the heat capacity is 2/3 near the critical points of the second order phase transition.
作者 伍世云 李玲
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2017年第6期17-25,共9页 Scientia Sinica Physica,Mechanica & Astronomica
关键词 纠缠熵 相变 暗能量 黑洞 entanglement entropy, phase transition, dark energy, black hole
  • 相关文献

参考文献3

二级参考文献34

  • 1Sonner J, Green A G. Hawking radiation and non-equilibrium quantum critical current noise. Phys Rev Lett, 2012, 109:091601.
  • 2Li W J, Tian Y, Zhang H B, et al. Periodically driven holographic superconductor. J High Energy Phys, 2013, 2013:30.
  • 3Murata K, Kinoshita S, Tanahashi N, et al. Non-equilibrium condensation process in a holographic superconductor. J High Energy Phys, 2010 2010:1-20.
  • 4Tian Y, Wu X N, Zhang H B, et al. Poor man's holography: How far can it go? Class Quant Grav, 2013, 30:125010.
  • 5Baler R, Mueller A H, Schiff D, et al. Bottom up thermalization in heavy ion collisions. Phys Lett B, 2001, 502:51-58.
  • 6Balasubramanian V, Bernamonti A, de Boer J, et al. Thermalization of strongly coupled field theories. Phys Rev Lett, 2011,106:191601.
  • 7Balasubramanian V, Bernamonti A, de Boer J, et al. Holographic thermalization. Phys Rev D, 2011, 84:026010.
  • 8Maldacena J M. The large N limit of superconformal field theories and supergravity. Adv Theor Math Phys, 1998, 2:231-252.
  • 9Garfinkle D, Pando Zayas L A. Rapid thermalization in field theory from gravitational collapse. Phys Rev D, 2011, 84:066006.
  • 10Steineder D, Stricker S A, Vuorinen A, et al. Probing the pattern of holographicthermalization with photons. J High Energy Phys, 2013, 2013:14.

共引文献4

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部