期刊文献+

Representative Elementary Volume(REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores 被引量:4

Representative Elementary Volume(REV) in Spatio-Temporal Domain: A Method to Find REVfor Dynamic Pores
原文传递
导出
摘要 One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO_2 movement while others show that mineralization due to CO_2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO_2 storage in the subsurface. We study the changes in the Representative Elementary Volume(REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO_2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO_2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale. One of the potential risks associated with subsurface storage of CO_2 is the seepage of CO_2 through existing faults and fractures. There have been a number of studies devoted to this topic. Some of these studies show that geochemistry, especially mineralization, plays an important role in rendering the faults as conduits for CO_2 movement while others show that mineralization due to CO_2 injection can result in seep migration and flow diversion. Therefore, understanding the changes in reservoir properties due to pore alterations is important to ensure safe long term CO_2 storage in the subsurface. We study the changes in the Representative Elementary Volume(REV) of a rock due to reactive kinetics over a time, using a statistical approach and pore-scale CO_2-rock interactiondata.The goal of this study is to obtain the REV of a rock property that accounts for pore-scale changes over time due to reactive kinetics, and we call this as spatiotemporal REV. Scale-up results suggest that the REV changes with time when CO_2-rock interaction is considered. It is hypothesized that the alteration in pore structure introduces more heterogeneity in the rock, and because of this the magnitude of REV increases. It is possible that these noticeable changes in REV at pore-scale may have an impact when analyzed at the reservoir scale.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2017年第2期391-403,共13页 地球科学学刊(英文版)
基金 supported by the Center for Frontiers of Subsurface Energy Security (CFSES), UT Austin funded by Basic Energy Sciences at the U.S.Department of Energy
关键词 reactive dynamics reaction rate constant CO_2 scale-up upscaling geostatistics reactive dynamics reaction rate constant CO_2 scale-up upscaling geostatistics
  • 相关文献

同被引文献34

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部