期刊文献+

炮兵阵地选取的空间数据挖掘模型研究 被引量:1

A Study on the Model of Spatial Data Mining for Artillery Position Selection
下载PDF
导出
摘要 根据炮兵阵地地形选取的要求 ,从地理信息系统出发 ,运用人工智能、数据挖掘、多媒体等技术 ,提出了炮兵阵地选取的空间数据挖掘模型 ,为炮兵阵地选取的计算机实现提供了一种有效的解决方案 ,使指挥决策者能快速从复杂的地域信息中找到适于炮兵阵地所需的地形信息 。 According to the requirements in the topographical selection for the artillery position and based on the viewpoint of geographical information system, a new model of data mining for artillery position selection is put forward. The model makes use of artificial intelligence, data mining and multimedia technology etc., that supplies an effective scheme for the computer realization of the artillery position selection. The model enables the command decision maker to find readily the needed topography information satisfying the artillery position from the complex regional information, and provides a digitized information system of the field operations with the necessary decision support.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2002年第4期469-472,共4页 Transactions of Beijing Institute of Technology
基金 国防预研项目
关键词 炮兵阵地 军事原则 挖掘模型 数据挖掘 决策支持 artillery position military principles mining model data mining decision support
  • 相关文献

参考文献3

二级参考文献9

  • 1Frawley W. Piatesky-Shapiro G, Matheus C, Knowledge Discovery in Databases: An Overview,In Piatesky-Shapiro G. and Frawley W (Ed.), Knowledge Discovery in Databases, AAAI/MIT Press.
  • 2Platesky-Shapiro G.An Overview of Knowledge Discovery in Databases: Recent Progress and Challenges, In W. P. Ziarko(Ed.), Rough Sets, Puzzy Sets and Knowledge Discovery,Springer Verlag, 1994.
  • 3Han J. Data Mining Techniques. ACM-SIGMOD'96 Conf. Tutorial, June, 1996.
  • 4Koperski K. Adhihary J. Han J.Spatial Data Mining Progress and Challenges. SIGMOD'96 Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'96),Montreal, Canada, June, 1996.
  • 5邸凯昌,李德仁.KDD技术及其在GIS中的应用与扩展.中国GIS协会第二届年会,北京,1996.
  • 6邸凯昌,李德仁,李德毅.空间数据发掘和知识发现的框架.第十届全国遥感技术学术交流会,青岛.1997.
  • 7Ester M.et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proc. 2nd Int.Conf.on Knowledge Discovery and Data Mining, Portland,USA, 1996.
  • 8Ng R T.Han J. Efficient and Effective Clustering Methods for Spatial Data Mining, Proc. of the 20th VLDB Conf. Santiago.Chile, 1994.
  • 9Ester M. et al.A Database Interface for Clustering in Large Spatial Databases, Proc.1st Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 1995.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部