摘要
支持向量机用于两类问题的识别研究 .本算法引入了 SVM,构造二叉树对多类问题进行层次聚类分析 .该算法采用 SVM对两类问题进行识别 ,通过合并逐步由底向上构造二叉树 ,最终二叉树的数目即为聚类数 .它适合任意形状的聚类问题 ,而且可以确定最优聚类的结果 ,并适于高维数据的分析 .
Support vector machine (SVM) is applied to recognize two separable classes. The algorithm builds up a binary tree to tackle multi class recognition by SVM based hierarchical clustering. SVM is used to recognize two classes and builds up a binary tree in a bottom to up version to analyze the multi class recognition. The number of binary trees is ultimately the number of clustering. It can be applied to clustering problems of arbitrary shapes, achieving the best result, and adapted to fit for the analysis of high dimensional data.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2002年第4期485-488,共4页
Transactions of Beijing Institute of Technology
基金
国防预研项目
关键词
支持向量机
数据挖掘
空间数据库
聚类
层次算法
support vector machine (SVM)
data mining (DM)
spatial databases (SD)
clustering
hierarchical algorithm