期刊文献+

基于SVM的空间数据库的层次聚类分析 被引量:9

Support Vector Machine Based Hierarchical Clustering of Spatial Databases
下载PDF
导出
摘要 支持向量机用于两类问题的识别研究 .本算法引入了 SVM,构造二叉树对多类问题进行层次聚类分析 .该算法采用 SVM对两类问题进行识别 ,通过合并逐步由底向上构造二叉树 ,最终二叉树的数目即为聚类数 .它适合任意形状的聚类问题 ,而且可以确定最优聚类的结果 ,并适于高维数据的分析 . Support vector machine (SVM) is applied to recognize two separable classes. The algorithm builds up a binary tree to tackle multi class recognition by SVM based hierarchical clustering. SVM is used to recognize two classes and builds up a binary tree in a bottom to up version to analyze the multi class recognition. The number of binary trees is ultimately the number of clustering. It can be applied to clustering problems of arbitrary shapes, achieving the best result, and adapted to fit for the analysis of high dimensional data.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2002年第4期485-488,共4页 Transactions of Beijing Institute of Technology
基金 国防预研项目
关键词 支持向量机 数据挖掘 空间数据库 聚类 层次算法 support vector machine (SVM) data mining (DM) spatial databases (SD) clustering hierarchical algorithm
  • 相关文献

参考文献9

  • 1[1]Frawley W, Piatesky-Shapiro G, Matheus C. Knowledge discovery in databases: An overview[A]. Piatesky-shapiro G, Frawley W. Knowledge discovery in Databases[C]. Menlo Park CA:AAAI/MIT Press,1991.
  • 2[2]Koperski K, Han J. Discovery of spatial association rules in geographic information databases[Z]. Proc 4th Int'1 Symp on Large Information Databases (SSD'95), Maine, 1995.
  • 3[3]Guha Sudipto, Rajeev Rastogi, Kyuseok Shim. CURE: An efficient clustering algorithm for large databases[Z]. ACM SIGMOD International Conference on Management of Data, New York, 1998.
  • 4[4]Wang Wei, Jiong Yang, Muntz R. STRING: A statistical information grid approach to spatial data mining[Z]. The 23rd Very Large Databases Conference (VLDB1997), Athens, 1997.
  • 5[5]Zhang Tian, Raghu Ramakrishnan, Miron Livny. BIRCH: An efficient data clustering method for very large databases[Z]. ACM SIGMOD International Conference on Management of Data, Montreal, 1996.
  • 6[6]Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise[Z]. The 4th International Conference on Knowledge Discovery and Data Mining (KDD98), New York, 1998.
  • 7[7]Sheikholeslami Gholamhosein, Surojit Chatterjee, Zhang Aidong. WaveCluster: A multi-resolution clustering approach for very large spatial databases[Z]. The 24th Very Large Databases Conference (VLDB98), New York, 1998.
  • 8[8]Agrawal Rakesh, Johannes Gehrke, Dimitrios Gunopulos, et al. Automatic subspace clustering of high dimensional data for data mining application[Z]. ACM SIGMOD International Conference on Management of Data, Seattle, Washington, 1998.
  • 9[9]Vapnik V N. Statistical learning theory[M]. New York: John Wiley & Sons, 1998.

同被引文献90

引证文献9

二级引证文献237

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部