期刊文献+

基于预测方法的直流微网混合储能虚拟惯性控制 被引量:34

Virtual Inertia Control of Hybrid Energy Storage in DC Microgrid Based on Predictive Method
下载PDF
导出
摘要 为增强直流微网扰动抑制能力,使直流侧电压在系统扰动时呈现惯性响应特性,提出了一种基于变流器预测控制的直流微网混合储能系统虚拟惯性控制策略。该方法采用微网储能系统变流器作为虚拟惯性控制单元,增加直流电压变化作为控制输入变量,增强了其暂态运行稳定性。此外,为提高直流微网本地控制速度,以配合储能系统的快速惯性调节,避免因控制延时造成的滞后控制现象,提出了基于模型预测方法的储能变流器本地控制方法,并采用由蓄电池和超级电容组成的混合储能系统,以弥补蓄电池充放电速率较慢的缺点。基于Matlab建立了风电直流微网系统仿真模型,仿真结果验证了所提策略的有效性。 To enhance disturbance rejection capability of DC microgrid and enable inertial response of DC voltage on system disturbance, virtual inertia control strategy of hybrid energy storage in DC microgridbased on predictive method is proposed. In this method, converter of energy storage system in microgrid is adopted as inertia control unit with DC voltagevariation as input control variable to enhance its transient stability. In order to improve local converter control speed to match fast inertia regulation of energy storage system, a local energy converter control method based on model predictive strategy is proposed. In addition, generally used battery in energy storage system in DC microgrid is replacedwith a hybrid energy storage structure where super capacitor is adopted to absorb high frequency disturbance. In order to verify validity of the proposed control strategy of hybrid energy storage based on predictive method, simulations are conducted and results show that the proposed control method can effectively improve transient response to system disturbance and guarantee DC bus voltagequality and system stability.
出处 《电网技术》 EI CSCD 北大核心 2017年第5期1526-1532,共7页 Power System Technology
基金 国家863高技术基金项目(2015AA050101)~~
关键词 直流微网 虚拟惯性 模型预测控制 混合储能 DC microgrid virtual inertia model predictive control hybrid energy storage system
  • 相关文献

参考文献3

二级参考文献58

  • 1张方华,严仰光.高频耦合AC-AC变压器的研究[J].中国电机工程学报,2005,25(12):149-153. 被引量:60
  • 2张丹丹,罗曼,陈晨,何俊佳.超级电容器–电池复合脉冲电源系统的试验研究[J].中国电机工程学报,2007,27(30):26-31. 被引量:38
  • 3Zhou H H, Bhattacharya T, Tran D, et al. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 923-930.
  • 4Schupbach R M, Balda J C. Comparing DC-DC converters for power management in hybrid electric vehicles[C]//Electric Machines and Drives Conference. Madison, USA: IEEE, 2003: 1369-1374.
  • 5Grigore V, Hatonen J, Kyyra J, et al. Dynamics of a buck converter with a constant power load[C]//Power Electronics Specialists Conference. Fukuoka, Japan: IEEE, 1998: 72-78.
  • 6Blaabjerg F, Teodorescu R, Liserre M, et al. Overview of control and grid synchronization for distributed power generation systems[J]. Industrial Electronics, 2006, 53(5): 1398-1409.
  • 7Hatziargyriou N, Asano H, Iravani R, et al. Microgfids[J]. Power andEnergy, 2007, 5(4): 78-94.
  • 8Sannino A, Postiglione G, Bollen M H J. Feasibility ofa DC network for commercial facilities[J]. Industry Applications, 2003, 39(5): 1499-1507.
  • 9Baran M E, Mahajan N R. DC distribution for industrial systems: opportunities and challenges[J]. IndustryApplications, 2003, 39(6): 1596-1601.
  • 10Salomonsson D, Sannino A. Low-voltage DC distribution system for commercial power systems with sensitive electronic loads[J]. Power Delivery, 2007, 22(3): 1620-1627.

共引文献152

同被引文献301

引证文献34

二级引证文献419

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部