期刊文献+

单室微生物电解池处理含镍模拟废水 被引量:5

Nickel efficiency removal in single-chamber microbial electrolysis cells
原文传递
导出
摘要 为了利用废水中的有机物及降低重金属浓度,研究了单室微生物电解池对模拟废水中Ni(Ⅱ)的去除,探索了不同影响因子对镍的去除影响。在最佳外加电压0.7 V、最适初始pH 7.0、100 mmol·L^(-1)PBS下,单室微生物电解池运行48 h,对12.5 mg·L^(-1)Ni(Ⅱ)和1 000 mg·L^(-1)COD的去除率分别可达到(88.2±2.5)%和(72.2±0.9)%,有效地降低了重金属浓度,拓展了生物电化学系统系统在去除重金属离子废水方面的应用。 In order to reduce the amount of heavy metals in wastewater,the application of a single-chamber mi- crobial electrolysis cell (SMEC)for the removing Ni ( Ⅱ )in simulated wastewater was studied, and the effect of different factors on the efficiency of nickel removal was explored. Under the conditions of an applied voltage of 0.7 V, optimal initial pH of 7.0,100 mmol · L^- 1 PBS, operating time of 48 h, the removal efficiencies of 12.5 mg· L^-1 Ni(11)and 1 000 mg · L^-1 COD were (88.2 ±2.5)% and (72.2 ±0.9)%,respectively in an SMEC. This method effectively reduces the concentration of heavy metals and broadens the application of the bio- logical electrical system (BES)in removing heavy metals with energy generation.
出处 《环境工程学报》 CAS CSCD 北大核心 2017年第5期2792-2796,共5页 Chinese Journal of Environmental Engineering
基金 哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金项目(HCK201509)
关键词 除镍 单室微生物电解池 影响因子 优化 nickel removal SMEC influence factors optimization
  • 相关文献

参考文献1

二级参考文献20

  • 1Foster N S, Noble R D, Koval C A. Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions. Environmental Science & Technol- ogy, 1993, 27(2): 350-356.
  • 2Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333(6169): 134-139.
  • 3Kim K, Keller A A, Yang J. Removal of heavy metals from aqueous solution using a novel composite of recycled materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 425: 6-14.
  • 4Islamolu S, Ydmaz L. Effect of ionic strength on the complexation of polyethyleneimine (PEI) with Cd2+ and Ni2+ in polymer enhanced ultrafiltration (PEUF). Desalination, 2006, 200(1-3): 288-289.
  • 5Molinari R, Poerio T, Argurio P. Selective separation of copper(H) and nickel(11) from aqueous media using the complexation- ultrafiltration process. Chemosphere, 2008, 70(3): 341-348.
  • 6Fomari P C A, Abbruzzese C. Copper and nickel selective recovery by electrowinning from electronic and galvanic industrial solutions. Hydrometallurgy, 1999, 52(3): 209 -222.
  • 7Bijmans M F M, van Helvoort P J, Dar S A, Dopson M, Lens P N L, Buisman C J N. Selective recovery of nickel over iron from a nickel- iron solution using microbial sulfate reduction in a gas-lift bioreactor. Water Research, 2009, 43(3): 853-861.
  • 8Sahinkaya E, Gungor M, Bayrakdar A, Yucesoy Z, Uyanik S. Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide. Journal of Hazardous Materials, 2009, 171(1-3): 901-906.
  • 9Mu Y, Rozendal R A, Rabaey K, Keller J. Nitrobenzene removal in bioelectrochemical systems. Environmental Science & Technology, 2009, 43(22): 8690-8695.
  • 10Logan B E, Cheng S, Watson V, Estadt G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environmental Science & Technology, 2007, 41(9): 3341- 3346.

共引文献3

同被引文献72

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部