期刊文献+

Bernstein算子线性组合加权逼近下的Stechkin-Marchaud不等式

STECHKIN-MARCHAUD TYPE INEQUALITIES OF WEIGHTED APPROXIMATION FOR THE LINEAR COMBINATIONS OF BERNSTEIN OPERATORS
下载PDF
导出
摘要 利用K-泛函与光滑模的等价关系,研究了Bernstein算子线性组合加Jacobi权逼近下的Stechkin-Marchaud型不等式,并得到了Bernstein算子线性组合关于ω_φ~r(f,t)_w的逆定理,对已有结果进行了完善及补充。 Based on the equivalence relation between the K-functional and the moduli of smoothness, the Stechkin-Marchaud type inequality with the Jacobi weighted approximation for the Linear Combinations of Bernstein Operators are established. Moreover, the inverse result of Bernstein Operators with ωrφ(f,t)wis obtained, the existing results are improved and added.
作者 唐小军 王新长 曾招云 易华 TANG Xiao-jun WANG Xin-chang ZENG Zhao-yun YI Hua(School of Mathematics and Physics, Jinggangshan University, Jian, Jiangxi 343009, Chin)
出处 《井冈山大学学报(自然科学版)》 2017年第2期9-11,34,共4页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(61374188) 江西省自然科学基金项目(20161BAB201017)
关键词 BERNSTEIN算子 光滑模 线性组合 Stechkin-Marchaud不等式 加权逼近 Bernstein operators linear combinations Jacobi weighted Stechkin-Marchaud type inequality weighted approximation
  • 相关文献

参考文献8

二级参考文献47

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部