期刊文献+

一种基于经验模态分解和流形学习的滚动轴承故障诊断方法 被引量:1

A ROLLER BEARING FAULT DIAGNOSIS METHOD BASED ON THE EMPIRICAL MODE DECOMPOSITION (EMD) AND MANIFOLD LEARNING (LTSA)
下载PDF
导出
摘要 提出一种基于经验模态分解(EMD)和流形学习(LTSA)的滚动轴承故障诊断方法。首先,利用EMD对滚动轴承振动信号进行自适应分解,计算IMF分量的协方差矩阵特征值,组成滚动轴承状态原始特征集;然后利用LTSA对原始特征集进一步的融合提取;将所得新特征输入到K-means分类器中进行故障识别与聚类。实验分析结果表明:该方法可以有效地对滚动轴承的工作状态和故障类型进行识别。 A roller bearing fault diagnosis method based on the empirical mode decomposition (EMD) and manifold learning (LTSA) was presented. After the adaptive decomposition of the roller beating vibration signal by the EMD technique, its original state feature set of the rolling bearing was acquired by calculating eigenvalues of IMF's covariance matrix. The extraction performance of the original feature set was further fusion implemented by using the LTSA. The new features obtained were input into a K-means classifier, and the output of the K-means classifier was clustering results. Finally, the experiment results show that the proposed method can effectively identify work status and fault type of roller bearing.
作者 蔡江林 戚晓利 叶绪丹 郑近德 潘紫微 张兴权 CAI Jiang-lin QI Xiao-li YE Xu-dan ZHENG Jin-de PAN Zi-wei ZHANG Xing-quan(School of Mechanical Engineering, Anhui University of Technology, Ma'anshan 243002, Chin)
出处 《井冈山大学学报(自然科学版)》 2017年第2期66-73,共8页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(51505002 51375013)
关键词 滚动轴承 经验模态分解 流形学习 局部切空间排列算法 K-means分类器 roller bearing EMD(empirical mode decomposition) manifold learning LTSA(local tangent space alignment algorithm) K-means classifier
  • 相关文献

参考文献5

二级参考文献64

  • 1胡桥,何正嘉,张周锁,訾艳阳,雷亚国.基于提升小波包变换和集成支持矢量机的早期故障智能诊断[J].机械工程学报,2006,42(8):16-22. 被引量:44
  • 2ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
  • 3KOUROPTEVA O,OKUN O,HADID A,et al.Beyond locally linear embedding algorithm,MVG-01-2002[R].Finland:Machine Vision Group,University of Oulu,2002:1-49.
  • 4The Case Western Reserve University Bearing Data Center.Bearing data center fault test data[EB/OL].[2009-10-01].http://www.eecs.cwru.edu/laboratory/bearing/.
  • 5Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 6Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.
  • 7Huang N E,Shen Z,Long R S.A new view ofnonlinear water waves-the Hilbert spectrum[J],Ann.Rev.Fluid Mech.,1999,31:417-457.
  • 8Khaldi K,Boudraa A O,Bouchikhi A,et al.Speechsignal noise vdmction by EMD[A].IEEEInternational Symposium on Communications,Controland SignalProcessing ISCCSP 2008,St.Julians,Malta,2008:1 155-1 158.
  • 9Dejie Yu,Junsheng Cheng,Yu Yang.Application ofEMD method and Hilbert spectrum to the faultdiagnosis of roller bearings[J].Mechanical Systemsand Signal Processing,2005,19:259-270.
  • 10Guanghong Gai.The processing of rotor startupsignals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.

共引文献270

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部