摘要
针对传统检索方法无法克服3维模型姿态与分辨率变化对精度的影响,基于主动式图学习方法,提出了一种全新的3维模型检索方法.以3维模型侧影轮廓的概率密度分布作为3维模型相似度度量,借助图学习模型完成3维模型的流形构建和检索,并利用主动学习原理增加模型的适用范围,提高检索准确率.实验结果表明,该算法有更高的检索准确率.
Aimed at the lack of precision with the attitude and resolution of 3D model in traditional methods,a new 3D model retrieval method is provided based on active graphic learning.It makes use of silhouettes' probability density as similarity measure,and then accomplishes manifold reconstruction and retrieval of 3D models with the help of graphic learning model while extending the scope of application of models by active learning principle so as to increase the accuracy of retrieval.The experimental results present a higher accuracy of our algorithm.
出处
《江苏师范大学学报(自然科学版)》
CAS
2017年第2期53-57,共5页
Journal of Jiangsu Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(61272297)
江苏省普通高校研究生实践创新计划项目(SJLX15-0710)
关键词
3维模型检索
侧影轮廓
概率密度
流形学习
主动学习
3D model retrieval
silhouette
probability density
manifold learning
active learning