期刊文献+

九龙江河口区微生物多样性及群落结构的时空分布 被引量:2

Phylogenetic diversity and spatiotemporal patterns of the bacterial community in Jiulong River estuary
下载PDF
导出
摘要 河口区由于其独特的地理环境和理化条件,拥有丰富的微生物资源,在生物地球化学循环中起着重要作用.然而,由于人类活动带来的河口区环境因素改变,引起的微生物群落结构的时空变化目前还知之甚少.本研究选取九龙江河口区7个近年来遭受较为严重人类活动干扰的采样点,分别在丰水期和枯水期采集表层水体,采用流动注射法测定了水体的三氮、电导率、pH值和溶解性磷酸盐等环境参数,采用海水和淡水培养基,基于纯培养技术分析了可培养细菌的总数和分布特征,并通过构建16S rRNA基因克隆文库的方法研究细菌的多样性和群落结构变化.研究表明,变形菌门(Proteobacteria)、放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes)是各克隆文库中最优势的类群.在河口下游海水区,变形菌门微生物与放线菌门微生物的比例约为2∶1~3∶1,而在河口上游淡水区,变形菌门和放线菌门的比例约为1∶1.在河口下游海水区,α变形菌纲(Alphaproteobacteria)为变形菌门中的优势类群,而在河口上游淡水区,β变形菌纲(Betaproteobacteria)为优势类群.厚壁菌门(Firmicutes)是克隆文库中丰度占第四的类群,说明水体可能遭受畜牧养殖粪便污染.本研究表明,九龙江河口区微生物群落结构受水体盐度、温度、水文情况等时空因子及人类活动造成的营养物浓度上升、动物粪便污染等共同影响,呈现出独特的时空分布特点. Estuary ecosystems are important water sources with microorganisms as key components playing crucial roles in global biogeochemical cycles. However, the spatiotemporal variation in the distribution and abundance of microbes as well as the response to anthropogenic environmental changes are still poorly understood. In this study, seven sampling sites were selected in Jiulong River estuary, which has experienced intensive human perturbation in recent years. The changes in the diversity and structure of microbial community were analyzed while the environ-mental factors were determined both in rainy and dry seasons. The results of 16S rRNA gene clone libraries indica-ted that Proteobacteria, Actinobacteria and Bacteroidetes were the most predominant groups. Both in rainy and dry seasons, the ratio of Proteobacteria to Actinobacteria was about 2: 1 ?3: 1 in the upper reaches while about 1: 1 in the lower reaches. At the level of class, Betaproteobacteria dominated the phylum of Proteobacteriain in the upper reaches but Alphaproteobacteria were the majority in the lower reaches. Firmicutes were the fourth abundant group in dry season, implying the contaminated water bodies by fecal pollution. Our study demonstrated that the microbial community in Jiulong River estuary was sensitive to human-caused environmental changes and displayed a distinct spatiotemporal pattern driven by salinity, nutrients, temperature, river flow and contamination such as animal feces.
作者 洪璇 张永雨 陈仲巍 李鹤宾 赵春贵 杨素萍 HONG Xuan ZHANG Yong-yu CHEN Zhong-wei LI He-bin ZHAO Chun-gui YANG Su-ping(Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021 , China Xiamen Key Laboratory of Marine Medicinal Natural Products and Cell Engineering, Xiamen Medical College, Xiamen 361008, China Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China)
出处 《应用海洋学学报》 CSCD 北大核心 2017年第2期167-176,共10页 Journal of Applied Oceanography
基金 国家海洋公益性行业科研专项资助项目(201505026) 福建省自然科学基金资助项目(2015J01137) 中国科学院城市环境与健康重点实验室基金资助项目(KLUEH201005) 厦门南方海洋研究中心科研资助项目(14GYY74NF38) 厦门市科技计划资助项目(3502Z20163020)
关键词 海洋生物学 细菌群落 环境变化 九龙江河口区 marine biology bacterial community environmental change Jiulong River estuary
  • 相关文献

参考文献1

二级参考文献47

  • 1Zumft WG. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Review, 1997, 61(4): 533-616.
  • 2Berk BC, Ferguson SJ, Moir JW, et al. Enzyme and associated electron transport systems that catalyze the respiratory reduction of nitrogen oxides and oxyanions[J]. Biocbimica et BiophysicaActa, 1995, 1232(3): 97-173.
  • 3Glockner AB, Jngst A, Zumft WG. Copper-containing nitrite reductase from Pseudomonas aureofaciens is functional in a mutationally cytochrome cdl-free background (NirS-) of Pseudomonas stutzeri[J]. Archives of Microbiology, 1993, 160(1): 18-26.
  • 4Nogales B, Timmis KN, Nedwell DB, et al. Detection and diversity of expressed denitrification genes in estuarine sediments after reverse transcription-PCR amplification from mRNA[J]. Applied and Environmental Microbiology, 2002, 68(10): 5017-5025.
  • 5Tamegai H, Aoki R, Arakawa S, et al. Molecular analysis of the nitrogen cycle in deep-sea microorganisms from the Nankai Trough: genes for nitrification and denitrification from deep-sea environmental DNA[J]. Extremophiles, 2007, 11(2): 269-275.
  • 6Brettar I, Moore ER, H0fle MG. Phylogeny and abundance of novel denitrifying bacteria isolated from the water column of the Central Baltic sea[J]. Microbial Ecology, 2001, 42(3): 295-305.
  • 7Park SY, Shimizu H, Adachi S, et al. Crystal structure of nitric oxide reductase from denitrifying fungus Fusarium oxysporum[J]. Nature Structural Biology, 1997, 4(10): 827-832.
  • 8Magalhes CM, Machado A, Matos P, et al. Impact of copper on the diversity, abundance and transcription of nitrite and nitrous oxide reductase genes in an urban European estuary[J]. FEMS Microbiology Ecology, 2011, 77(2): 274-284.
  • 9Liu LM, Yang J, Zhang YY. Genetic diversity patterns of microbial communities in a subtropical riverine ecosystem (Jiulong River, southeast China)[J]. Hydrobiologia, 2011(678): 113-125.
  • 10Li QQ, Wang FP, Chen ZW, et al. Stratified active archaeal communities in the sediments of Jiulong River estuary, China[J]. Frontier in Microbiology, 2012, 3(311): 1-14.

共引文献13

同被引文献34

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部