期刊文献+

具有渐近二次项的一阶离散型哈密尔顿系统同宿轨的存在性 被引量:1

Existence of Homoclinic Orbit in First Order Discrete Hamiltonian System With Asymptotically Quadratic Term
下载PDF
导出
摘要 讨论具有渐近二次项的一阶离散型哈密尔顿系统同宿轨的存在性.在适当的条件下,利用强不定泛函的临界点定理得到渐近二次的哈密尔顿系统至少有一个非平凡的同宿轨. This paper discusses the existence of homoclinic orbit in first order discrete Hamiltonian system with asymptotically quadratic term. Under certain assumptions, we obtain that the asymptotical Hamiltonian system has at least one non-trivial homoclinic orbit via critical point theory for strongly indefinite functional.
作者 陈文雄 CHEN Wenxiong(School of Mathematical Sciences,Huaqiao University, Quanzhou 362021 , China)
出处 《华侨大学学报(自然科学版)》 北大核心 2017年第3期424-429,共6页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11226115)
关键词 哈密尔顿系统 离散型 同宿轨 渐近二次 临界点理论 Keywords: Hamiltonian system discrete type homoclinic orbit asymptotically quadratic critical point theory
  • 相关文献

参考文献2

二级参考文献28

  • 1CAO Ce-wen.Acta mathematics sinica[J].New Series,1991,(7):216-223.
  • 2ZHANG J S.Explicit solutions of a finite-dimensional integrable system[J].Phys Lett A,2005,(348):24-27.
  • 3WEISS J,TABOR M,CARNEVALE G.The painleve property for partial differential equation[J].J Math Phys,1984,(24):329-331.
  • 4CONTE R,MUSETTE M,GRUNDLAND A M.A reduction of the resonant three-wave interation to the generic six painleve equation[J].J Phys A,2006,(39):12115-12127.
  • 5STEEB W H,EULER N.Nonlinear evolution equations and Painleve′ test[M].Sigapore:World Scientetifis,1988.
  • 6Arioli G,Szulkin A.Homoclinic solutions of Hamiltonian system with symmetry. Journal of Differential Equations . 1999
  • 7Bartsch T,Ding Y H.Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Mathematische Nachrichten . 2006
  • 8Deng X Q,Cheng G.Homoclinic orbits for second order discrete Hamiltonian systems, with potential changing sign. Acta Applicandae Mathematicae . 2008
  • 9Ding Y H,Girardi M.Infinitely many homoclinic orbits of a Hamiltonian system with symmetry. Nonlinear Analysis . 1999
  • 10Ding Y H,Jeanjean L.Homoclinic orbits for a nonperiodic Hamiltonian system. Journal of Differential Equations . 2007

共引文献5

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部