期刊文献+

大数据环境下并行数据流预测及优化方法 被引量:1

Analysis of integrated online association rules based on OLAP fuzzy data cube
下载PDF
导出
摘要 以模糊集成联机分析处理(On-Line Analytical Processing,OLAP)为基础对关联规则挖掘算法进行改进,该算法为多维联机研究提供一种关联规则计算架构。基于模糊数据立方体的知识发现,为用户提供灵活的多维数据层次抽象模式。在多维数据集的多维属性处理中,引入模糊数据立方体作为问题措施补充,并利用不同层次的模糊关联规则构造模糊数据立方体,然后利用权重和多层次的概念构建模糊加权多层次关联规则。最后,通过对所提算法在合成数据集以及2000年中国人口普查的数据仿真测试,验证了基于OLAP的挖掘方法要比离散关联规则挖掘方法、单独支持阈值关联规则及最小挖掘项集关联规则三种对比算法,在最小支持度、置信度、权重均值等指标上,性能更加优异。 Based on the fuzzy integrated online analytical processing(OLAP),the algorithm of association rule mining is improved.This algorithm provides a new association rule mining method for multi dimensional online research.Knowledge discovery based on fuzzy data cube provides a flexible and multi dimensional data level abstraction model for users.The fuzzy data cube is used as the supplementary measures for problem to deal with the multidimensional attributes of the multidimensional data set.Then,the fuzzy data cube is constructed by using the fuzzy association rules of different levels,and the fuzzy weighted multilevel association rules are constructed by using the weights and multiple levels.Finally,through the simulation test of the proposed algorithm in the synthetic data set and the 2000 China census data show that,the OLAP based mining method was more excellent in the minimum support degree,upper confidence degree and weight average index than the three comparison algorithm of discrete association rules mining method,support a separate threshold association rules and mining the smallest association rule set.
出处 《信息技术》 2017年第5期110-116,共7页 Information Technology
关键词 联机分析处理 关联规则 数据立方体 多层次 多维属性 on-line analytical processing association rule data cube multi-level multi-dimension attribute
  • 相关文献

参考文献7

二级参考文献67

  • 1黄毅群,卢正鼎,胡和平,李瑞轩.分布式环境下保持隐私的关联规则挖掘算法[J].计算机工程,2006,32(13):12-14. 被引量:7
  • 2吴远红.ETL执行过程的优化研究[J].计算机科学,2007,34(1):81-83. 被引量:21
  • 3王自强,孙霞,张德贤.数据仓库中用于视图选择的增强遗传算法[J].小型微型计算机系统,2007,28(2):367-371. 被引量:4
  • 4George S,Sivakumar H.MDX解决方案(第2版)[M].李仁见,董霖,等译.北京:清华大学出版社,2008:10-18.
  • 5Wang Lingyu, Wijesekera D, Jajodia S. Inferences in Data Cubes[M]. Berlin, Germany: Springer-Verlag, 2002.
  • 6Wang Lingyu, Wijesekera D, Jajodia S. Cardinality-based Inference Control in Sum-only Data Cubes[C]//Proc. of the 7th European Symposium on Research in Computer Security. Berlin, Germany: Springer-Verlag, 2002.
  • 7Wang Lingyu, Wijesekera D, Jajodia S. Cardinality-based Inference Control in Data Cubes[J]. Journal of Computer Security, 2004, 12(5): 655-692.
  • 8Wang Lingyu, Jajodia S, Wijesekera D. Securing OLAP Data Cubes Against Privacy Breaches[C]//Proc. of IEEE Symposium on Security and Privacy. Berkeley, USA: IEEE Computer Society, 2004.
  • 9Wang Lingyu, Wijesekera D, Jajodia S. Preserving Privacy in On-line Analytical Processing[M]. [S. l.]: Springer-Verlag, 2007.
  • 10Wang Lingyu, Li Yingjiu. Precisely Answering Multidimensional Range Queries Without Privacy Breaches[C]//Proc. of ESORICS’03. Gjovik, Norway: [s. n.], 2003.

共引文献49

同被引文献11

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部