期刊文献+

考虑潜伏期及医疗资源影响的SEIS模型动力学分析 被引量:2

Behavior analysis of an SEIS epidemic model with latency and the impact of medical resource
下载PDF
导出
摘要 建立并分析考虑潜伏期及医疗资源影响的SEIS模型,其中医疗资源的影响主要考虑医院病床的数量与恢复率的关系。分析模型发现:当基本再生数R0>1时,系统只存在唯一正平衡点;当R0<1时,系统可能存在两个或无正平衡点,并且当医院的病床数小到一定值时,系统会发生后向分支,因此可以找到病床的存在阈值,这样既不造成浪费,又能保证治疗疾病时具有充足的资源。 An SEIS model, in which the latency and the impact of medical resource are considered, is investigated and analyzed. The impact of medical resource is on the relationship between the number of hospital beds and the recovery rate. For the model, it is found that if the basic reproduction number Ro is greater than 1, there exists a unique endemic equilibrium; if R0 〈 1 , there may exist two or no endemic equilibrium. In addition, the model undergoes backward bifurcation when the number of hospital beds is less than a certain value. Therefore, the critical threshold of hospital beds can be found, which is not on- ly low-cost but also can ensure the treatment of disease with sufficient resources.
机构地区 中北大学理学院
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2017年第2期169-174,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11201434) 山西省留学回国人员科研资助项目(2013-087) 山西省留学回国人员科技活动择优资助项目
关键词 SEIS模型 医院病床数 稳定性分析 后向分支 SEIS model number of hospital beds stability analysis backward bifurcation
  • 相关文献

参考文献1

二级参考文献10

  • 1DIEKMANN 0,HEESTERBEEK JAP. Mathematical epidemiology of infectious diseases : model building, analysis and interpretation [ M ]. NewYork: John Wiley & Sons, 2000.
  • 2HETHCOTE H W. The mathematics of infectious diseases[ J]. SIAM Review, 2000 , 42(4) : 599 -653.
  • 3KRIBS-ZALETA C M, VELASCO-HERNANDEZ J X. A simple vaccination model with multiple endemic states [ J ]. Mathematical Biosciences,2000,164(2) : 183 -201.
  • 4ARINO J,MCCLUSKEY C,VAN DEN DRIESSCHE P. Global results for an epidemic model with vaccination that exhibits backward bifurcation[J]. SIAM Joumai on Applied Mathematics, 2003,64( 1 ) : 260 -276.
  • 5ALEXANDER M E, MOGHADAS S M. Periodicity in an epidemic model with a generalized non-linear incidence [ J ]. Mathematical Biosciences,2004,189(1) : 75 -96.
  • 6LIU X N, TAKEUCHI Y,IWAMI S. SVIR epidemic models with vaccination strategies[ J] . Joumai of Theoretical Biology, 2008,253( 1):1 -11.
  • 7XIAO Y N, TANG S Y. Dynamics of infection with nonlinear incidence in a simple vaccination model[ J]. Nonlinear Analysis : Real World Applica-tions, 2010, 11(5) : 4154 -4163.
  • 8MAGPANTAY F M G,RIOLO M A, DE CELLES M D, et al, Epidemiological consequences of imperfect vaccines for immunizing infections [ J]. SI-AM Journal on Applied Mathematics, 2014, 74(6) : 1810 - 1830.
  • 9VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease trans-mission[ J]. Mathematical Biosciences, 2002, 180(1 -2) : 29 -48.
  • 10SHAN C, ZHU H. Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds[ J]. Journal of DifferentialEquations, 2014,257(5) : 1662 -1688.

共引文献2

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部