摘要
设n是正整数,φ(n)是Euler函数。讨论数论函数方程φ(xy)=kφ(x)φ(y)的正整数解问题,得出该方程只有在k=1,2,3情况下有正整数解,并且当k=1时,正整数解为(x,y)=(Q_1,Q_2),其中Q_1,Q_2是满足gcd(Q_1,Q_2)=1的正整数;当k=2,正整数解为(x,y)=(2αQ_1,2αQ_2),其中Q_1,Q_2是满足gcd(Q_1,Q_2)=1的正整数,gcd(Qi,2)=1,i=1,2,α是正整数;当k=3时,正整数解为(x,y)=(2β3αQ_1,2β3αQ_2),其中Q_1,Q_2是满足gcd(Q_1,Q_2)=1的正整数,gcd(Qi,2)=1,gcd(Qi,3)=1,i=1,2,α,β是正整数。
Let n be a positive integer, and let φ (n) be Euler function. The positive integer solutions of arithmetic function equation φ(xy)=kφ(x)φ(y) are studied. It is shown that the equation has positive integer solutions only if k = 1,2,3. If k = 1, then this equation has positive solutionsx,y=(Q1,Q2),where gcd( Q1 ,Q2 ) = 1 ; If k =2, then this equation has positive solutions (x,y) = (2αQ1 ,2αQ2 ), where gcd( Q1, Q2 ) = 1, gcd( Qi ,2) = 1, i = 1,2, and α is a positive integer; If k =3, then this equation has positive solutions (x, y) = (2β3αQ1,2β3αQ2), where gcd (Q1, Q2) = 1, gcd (Q1, Q2) = 1,gcd( Qi ,3) = 1 ,i = 1,2and α ,β are positive integers.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2017年第2期181-185,共5页
Journal of Natural Science of Heilongjiang University
基金
新疆维吾尔自治区自然科学基金资助项目(2016D01A014)
关键词
EULER函数
数论函数方程
正整数解
Euler function
arithmetic function equation
positive integer solutions