期刊文献+

Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China 被引量:14

Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China
下载PDF
导出
摘要 Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity. The transitional zone between biomes in desert ecosystems, however, has received little attention in that regard. In this study, we conducted a quantitative field survey (including 187 sampling plots) in a 40-km2 study area to determine the spatial pattern of plant species diversity and analyze the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China. A total of 42 plant species belonging to 16 families and 39 genera were recorded. Shrub and semi-shrub species generally represented the major part of the plant communities (covering 90% of the land surface), while annual and perennial herbaceous species occupied a large proportion of the total recorded species (71%). Patrick richness index (R), Shannon-Wiener diversity index (H), Simpson's dominance index (D), and Pielou's evenness index (I) were all moderately spadaUy variable, and the variability increased with increasing sampling area. The semivariograms for R and H' were best fitted with Gaussian models while the semivariograms for D andJ were best fitted with exponential models. Nugget-to-still ratios indicated a moderate spatial autocorrelation for R, H', and D while a strong spatial autocorrelation was observed for J. The spatial patterns of R and H' were closely related to the geographic location within the study area, with lower values near the oasis and higher values near the mountains. However, there was an opposite trend for D. R, H', and D were significantly correlated with elevation, soil texture, bulk density, saturated hydraulic conductivity, and total porosity (P〈0.05). Generally speaking, locations at higher elevations tended to have higher species richness and diversity and the higher elevations were characterized by higher values in sand and gravel contents, bulk density, and saturated hydraulic conductivity and also by lower values in total porosity. Furthermore, spatial variability of plant species diversity was dependent on the sampling area. Understanding the spatial pattern of plant species diversity and the influencing factors has important implications for the conservation and management of ecosystem biodiversity. The transitional zone between biomes in desert ecosystems, however, has received little attention in that regard. In this study, we conducted a quantitative field survey (including 187 sampling plots) in a 40-km2 study area to determine the spatial pattern of plant species diversity and analyze the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China. A total of 42 plant species belonging to 16 families and 39 genera were recorded. Shrub and semi-shrub species generally represented the major part of the plant communities (covering 90% of the land surface), while annual and perennial herbaceous species occupied a large proportion of the total recorded species (71%). Patrick richness index (R), Shannon-Wiener diversity index (H), Simpson's dominance index (D), and Pielou's evenness index (I) were all moderately spadaUy variable, and the variability increased with increasing sampling area. The semivariograms for R and H' were best fitted with Gaussian models while the semivariograms for D andJ were best fitted with exponential models. Nugget-to-still ratios indicated a moderate spatial autocorrelation for R, H', and D while a strong spatial autocorrelation was observed for J. The spatial patterns of R and H' were closely related to the geographic location within the study area, with lower values near the oasis and higher values near the mountains. However, there was an opposite trend for D. R, H', and D were significantly correlated with elevation, soil texture, bulk density, saturated hydraulic conductivity, and total porosity (P〈0.05). Generally speaking, locations at higher elevations tended to have higher species richness and diversity and the higher elevations were characterized by higher values in sand and gravel contents, bulk density, and saturated hydraulic conductivity and also by lower values in total porosity. Furthermore, spatial variability of plant species diversity was dependent on the sampling area.
出处 《Journal of Arid Land》 SCIE CSCD 2017年第3期379-393,共15页 干旱区科学(英文版)
基金 financially supported by the National Natural Science Foundation of China(91025018) the Action Plan for West Development Project of Chinese Academy of Sciences(KZCX2-XB3-13)
关键词 species diversity spatial heterogeneity environmental factors Gobi Desert transitional zone species diversity spatial heterogeneity environmental factors Gobi Desert transitional zone
  • 相关文献

参考文献8

二级参考文献94

共引文献292

同被引文献185

引证文献14

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部