期刊文献+

基于时变差别适应度的网络演化模型 被引量:1

Network Evolution Model Based on Time-varying Difference Fitness
下载PDF
导出
摘要 将节点适应度的时变性和差异性抽象为时变差别适应度,在适应度模型的基础上,提出一种改进的网络演化模型。网络中新加入的节点趋向于连接节点入度大及感兴趣的节点,节点在演化过程中会随时与其他节点进行连接和断开。基于此,综合优先连接、随机加边、随机减边、节点互粉等机制实现网络演化。通过仿真分析节点的时变性和差异性对网络演化的影响,结果表明,该模型生成的网络度分布呈幂律分布,具有小世界现象,且与真实网络拟合度较高,验证了模型的正确性和有效性。 Time-varying performance and differentiation of node fitness are abstracted into time-varying difference fitness, and an improved network evolution model based on the fitness is proposed. In the network, the newly joined nodes tend to connect some nodes that have larger degree or attraction. And in the evolution process, the nodes are connected and disconnected with other nodes at any time. On this basis, a series of mechanisms including preferential attachment, random add edges, random delete edges and the nodes' mutual fans are used to achieve the evolution of the network. The influence of node time-varying performance and differentiation on network evolution is analysed seperatly. Through simulation analysis, the model of the distribution follows a power law distribution and with a small world phenomenon, and has high degree of fitting with the real network. The result verifies the correctness and validity of the model.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第4期94-99,共6页 Computer Engineering
基金 北京高等学校青年英才计划项目(YETP0506)
关键词 时变差别适应度 社交网络 网络演化 度分布 小世界现象 time-varying difference fitness social network network evolution degree distribution small world phenomenon
  • 相关文献

参考文献7

二级参考文献83

  • 1林鸿飞,杨元生.用户兴趣模型的表示和更新机制[J].计算机研究与发展,2002,39(7):843-847. 被引量:23
  • 2Albert R, Barabasi A L. Emergence of Scaling in Random Networks[J]. Science, 1999, 286(5439): 509-512.
  • 3Albert R, Jeong H. Mean-field Theory for Scale-free Random Networks[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 272(1/2): 173-187.
  • 4Li Xiang, Chen Guanrong. A Local-world Evolving Network Model[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 328(1/2): 274-286.
  • 5Jeong H, N6da Z. Measuring Preferential Attachment in Evolving Networks[J]. Europhys. Lett., 2003, 61(4): 567-572.
  • 6Dorogovtsev S N, Mendes J F. Structure of Growing Networks with Preferential Linking[J]. Phys. Rev. Lea., 2000, 85(21): 4633-4636.
  • 7陈关荣.复杂动力网络的研究将是新世纪科学技术前沿的战略性课题之一[C]//第35期东方科技论坛:非线性科学与上海城市发展会议论文集.上海:[s.n.],2003.
  • 8ALBERT R,BARABASI A. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74 (1) : 47-97.
  • 9NEWMAN M E J. Structure and function of complex networks[J]. SIAM Review,2003,45(2) :167-256.
  • 10WATTS D J ,STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998,393(6684):440-442.

共引文献26

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部