期刊文献+

基于信任社交圈的好友推荐算法 被引量:5

Friend Recommendation Algorithm Based on Trusted Social Circle
下载PDF
导出
摘要 为体现出在线社交网络中好友推荐时的用户倾向性,并且更真实反映现实生活中人与人之间的关系强度,将用户间的好友关系强度定义为信任度引入到相邻边拓扑信息相似性计算中,并结合用户兴趣模型导出用户社交圈,提出一种好友推荐算法。针对用户社交圈中未考虑好友间信任度的情况,将信任度融入到社交圈重叠程度计算中为用户发现其潜在的好友提供建议。实验结果表明,与基于社交圈相似性和公共朋友相似性的好友推荐算法相比,该算法具有更高的好友推荐准确率。 In order to reflect the tendency of users in the recommendation of friends in online social network, also to more really reflect the relationship strength between people in real life, the relationship between users is defined as the credibility and applied into the similarity calculation of topological information of adjacent edges, which is combined with user interest model to derive user social circle, then proposes a friend recommendation algorithm. Aiming at the situations of not taking into account the credibility between friends, the credibility is applied into the calculation method of the overlap degree of social circle, so as to provide suggestions for the users to find their potential friends. Experimental results show that the proposed algorithm has higher accuracy of friend recommendation, compared with friend recommended algorithms based on the similarity of social circle and the similarity of common friends.
出处 《计算机工程》 CAS CSCD 北大核心 2017年第5期149-155,共7页 Computer Engineering
关键词 好友推荐 社交网络 社交圈 信任度 相似度 friend recommendation social network social circle credibility similarity
  • 相关文献

参考文献5

二级参考文献84

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches/ /Proceedings of the 4th ACM Conference on Recommender Systems (Rec'Sys ' 2010). New York, USA, 2010: 99-206.
  • 3Tang Jie, Sun Jimeng, Wang Chi, Yang Zi. Social influence analysis in large-scale networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 807-816.
  • 4Wu S, Hofman J M, Mason W A, Watts DJ. Who says what to whom on twitter/ /Proceedings of the 20th International Conference on World Wide Web (WWW?Il). Hyderabad , 2011: 705-714.
  • 5Jeon H, Kim T, Choi J. Adaptive user profiling for personalized information retrieval! /Proceedings of the 2008 International Conference on Convergence and Hybrid Information Technology. Busan , 2008: 836-841.
  • 6Xiang Rongjing, Neville J, Rogati M. Modeling relationship strength in online social networks/ /Proceedings of the WWW2010. Raleigh, North Carolina, USA, 2010: 981-990.
  • 7Clauset A, Newman M E J, Moore C. Finding community structure in very large networks. Physical Review E, 2004, 70(6): 066111.
  • 8Newman M E J. Clustering and preferential attachment in growing networks. Physical Review E, 2001, 64(2): 025102.
  • 9Crandall D, Cosley D, Huttenlocher D, et al. Feedback effects between similarity and social influence in online communities/ /Proceedings of the KDD' 08. Las Vegas, Nevada, USA, 2008: 160-168.
  • 10Weng J, Lim E-P, Jiang J, He Q. Twitterrank , Finding topicsensitive influential twitterers/ /Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. New York, USA, 2010: 261-270.

共引文献165

同被引文献62

引证文献5

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部