期刊文献+

基于噪声自检测的分段非线性组合Adaboost改进算法 被引量:3

Improved Piecewise Nonlinear Combinatorial Adaboost Algorithm Based on Noise Self-detection
下载PDF
导出
摘要 针对传统Adaboost算法对有噪声样本敏感的问题以及线性相加基分类器的不合理性,提出一种噪声自检测的分段非线性组合Adaboost算法(NDK Adaboost)。NDK Adaboost利用传统Adaboost算法的训练误差率随迭代次数呈指数下降的特点直接构造检测噪声模型来识别噪声,并且在预测阶段将预测样本映射到训练样本的相对位置,根据其邻近的样本分布决定基分类器的权重,从而使算法在不同的样本分布中具有较高的分类准确率。实验结果表明,与传统Adaboost算法以及Adaboost相关的改进算法相比,该算法具有较高的分类准确率。 As traditional Adaboost algorithm is sensitive to noisy sample and the linear combination of base classifiers is irrational, a piecewise nonlinear Adaboost algorithm based on noise self-detection called NDK Adaboost is proposed. NDK Adaboost,drawing on traditional Adaboost algorithm whose error rate in training set decreases with iteration times exponentially,establishes directly a noise detection model to recognize noise, and maps the prediction samples to the relative positions of the training set. According to the neighbor samples' distribution, it determines the weight of the base classifier. A higher classification accuracy rate of the algorithm can be drawn out among the different sample distribution. Experimental results show that,compared with the traditional Adaboost algorithm and the related improved algorithms, NDK Adaboost has a higher classification accuracy rate.
作者 张才 陈优广
出处 《计算机工程》 CAS CSCD 北大核心 2017年第5期163-168,173,共7页 Computer Engineering
关键词 噪声检测 传统Adaboost 分段 基分类器 邻近样本 权重 noise detection traditional Adaboost piecewise base classifier neighbor sample weight
  • 相关文献

参考文献4

二级参考文献36

  • 1燕继坤,郑辉,王艳,曾立君.基于可信度的投票法[J].计算机学报,2005,28(8):1308-1313. 被引量:8
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3Boles W W. A wavelet transform based technique for the recognition of the human iris [C]//Proc International Symposium of Signal Processing and Its Applications. Gold Coast, Australia: ISSPA, 1996:601-604.
  • 4Paul V, Jones M. Robust real-time object detection [C]//Proc 2nd International Workshop on Statistical and Computational Theories of Vision Modeling, Learning, Computing, and Sampling. Vancouver, Canada: IEEE Press, 2001: 1-25.
  • 5Rainer L, Jochen M. An extented set of Haar-like features for rapid object detection [C]//Proc International Conference on Image Processing. Rochester, NY:IEEE Press, 2002: 900 - 903.
  • 6CASIA-IrisV3 [EB/OL][2006-06]. http://www, cbsr. ia. ac. cn/IrisDatabase, htm.
  • 7CUI Jiali, MA Li, WANG Yunhong, et al. An appearance-based method for iris detection [C]//Proc 6th Asian Conference on Computer Vision. Jeju, Korea: ACCV, 2004: 1091 - 1096.
  • 8Daugman J G. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1993, 15 (11) : 1148 - 1161.
  • 9Wildes R P, Asmuth J C, Green G L, et al. A system for automated iris recognition [C]//Proc 2nd IEEE Workshop on Application of Computer Vision. Sarasota, FL: IEEE Press, 1994: 121-128.
  • 10B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.

共引文献120

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部