摘要
针对在一定形状限制条件下的可形变填充问题,提出一种可计算填充方法。对目标区域和填充样板进行四边形网格剖分。给出在样板拼接、边界、旋转、最小形变等约束条件下的整型规划,使用填充样板在填充区域中进行离散拼接,并通过全局优化迭代样板形变,以达到理想的填充效果。实验结果表明,该填充方法对目标区域的有效覆盖率以及边缘拟合度与约束限制无直接关系,在指定约束条件下,能较好地达到区域填充效果。
This paper proposes a computable filling method, aiming at the problem of deformable filling under certain shape constraint conditions. Quadrilateral mesh split of the target area and filling template is done. Integer planning is presented under constraint conditions such as template connecting, boundary, rotation, minimum deformation, etc. Discrete splicing in filling area is realized using filling template. Through the global optimization, model deformation is iterated, so as to achieve the desired filling effect. Experimental results show that the proposed filling method has no direct relationship with the constraints in domain coverage ratio of target area and edge fitting degree, and it can better achieve region filling under the specified constraints.
出处
《计算机工程》
CAS
CSCD
北大核心
2017年第5期299-305,312,共8页
Computer Engineering
基金
国家重点实验室创新基金(ZZKT2013A12)
江苏省科技支撑计划项目(BE2011058
BY2012190)
关键词
四边形网格
区域填充
离散拼接
整型规划
形状约束
全局优化
quadrilateral mesh
domain filling
discrete splicing
integer planning
shape constrains
global optimization