期刊文献+

基于低秩投影中稀疏误差矩阵分析的视觉跟踪

Visual tracking based on analysis of sparse error matrix in low rank projection
下载PDF
导出
摘要 单目标跟踪是计算机视觉的重要组成部分,其鲁棒性一直受到目标遮挡、光照变化、目标尺度变化等因素的制约。针对这个问题,提出了基于低秩投影中稀疏误差矩阵分析的视觉跟踪算法。为了克服模板漂移对跟踪的影响,采用目标模板和候选目标的相似性关系动态选择目标模板的更新方式。在粒子滤波的框架下,利用鲁棒主成分分析和低秩投影原理求得候选目标的稀疏误差矩阵,根据稀疏误差矩阵的边缘信息和平滑度信息实现对下一帧目标的观测似然估计。在多个视频序列上的实验表明,算法具有较好的鲁棒性。 Single target tracking is an important part of computer vision, and its robustness is re- stricted by target occlusion, illumination variation and target scale variation. To deal with these prob- lems, we propose a visual tracking algorithm based on the analysis of the sparse error matrix in low rank projection. In order to overcome the effect of model drifting, target templates are updated dynamically with the similarity between target templates and candidate targets. In the framework of particle filter, the sparse error matrix of candidate targets is obtained by using the theory of robust principal component analysis and low rank proiection, and the observation likelihood estimation of the next frame is achieved according to edge and smoothness information. Experimental results on multiple video sequences show that this algorithm has better robustness performance than that of the state-of-the-art tracker.
出处 《计算机工程与科学》 CSCD 北大核心 2017年第5期944-950,共7页 Computer Engineering & Science
基金 国家自然科学基金(51365017 61305019) 江西省科技厅青年科学基金(20132bab211032)
关键词 视觉跟踪 稀疏误差 粒子滤波 低秩投影 模板更新 , visual tracking sparse error particle filter low rank projection template update
  • 相关文献

参考文献1

二级参考文献15

  • 1Hao J, Fels S, Little J J. A Linear Programming Approach for Multiple Object Tracking[C] ff IEEE Conference on Computer Vision and Pattern Recognition, 2007 (CVPR ' 07 ). Minneapo- lis, MN, 2007 : 1-8.
  • 2Li Z,Yuan L, Nevatia R. Global data association for multi-object tracking using network flows[C]//IEEE Conference on Com- puter Vision and Pattern Recognition, 2008 (CVPR 2008). An- chorage, AK, 2008 : 1-8.
  • 3Pirsiavash H, Ramanan D, Fowlkes C C. Globally-optimal greedy algorithms for tracking a variable number of objects[C] ff 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providenee,RI,2011 : 1201-1208.
  • 4Berelaz J, Fleuret F, Turetken E, et al. Multiple Object Tracking Using K-Shortest Paths Optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33 ( 9 ) : 1806- 1819.
  • 5Butt A A,Collins R T. Multi-target Tracking by I.agrangian Re- jaxation to Min-cost Network Flow[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Port- land, OR, USA, 2013 : 1846-1853.
  • 6Forsyth D,Torr P, Zisserman A, etaj. Robust Object "fracking by Hier-archicaI Association of Detection Responses[M]//For- syth D, Torr P, Zisserman A. Computer Vision-[CCV 2008. Springer Berlin Heidelberg, 2008 : 788-801.
  • 7Yuan L, Chang H, Nevatia R. Learning to associate: Hybrid- Boosted multi-target tracker for crowded scene[C]//IEEE Con ference on Computer Vision and Pattern Recognition, 2009 (CVPR 2009 ). Miami, FI., 2009 : 2953-2960.
  • 8Bo Y,Chang H, Nevatia R. I.earning affinities and dependencies for multi-target tracking using a CRF model [C] //2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence,RI,2011 : 1233-1240.
  • 9Brendel W, Amer M, Todorovie S. Multiobject tracking as maxi- mum weight independent set [C] // 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI,2011 : 1273-1280.
  • 10Andriyenko A,Schindler K. Multi-target tracking by continuous.energy minimization[C] // 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Providence, RI, 2011 : 1265-1272.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部