期刊文献+

中文语音情感常用特征识别性能分析 被引量:1

The performance analysis of feature in Chinese Speech Emotion Recognition
下载PDF
导出
摘要 语音情感识别对于实现人机交互具有重要的应用价值。语音情感识别中,情感特征的选取与组合对于情感识别的准确率影响巨大。已有研究中,情感特征对识别率的贡献停留在定性分析中,未有定量的描述,不利于情感识别中特征的选择。本文针对中文语音情感识别中的常用特征进行定量分析,通过不同的情感特征进行组合,采用支持向量机进行分类,得到各情感特征对识别的贡献率。实验结果表明,单个特征中,梅尔倒谱系数贡献率最高,达到了78%;特征组合中,特征越多对识别率贡献越大。 The Speech Emotion Recognition is a vital technique for human-computer interaction. The selection and fusion of emotion feature is a key impact factor to accuracy of recognition. In existing study, the contribution of emotion feature to recognition rate is still stay on perception analysis, the quantitative analysis is rarely reported. However, the perception analysis is unhelpful for the feature selection in applications. This paper proposes a quantitative analysis method for helping select the emotion feature on Chinese Speech Emotion Recognition. In the proposed method, the research obtains the contribution of features for emotion recognition by different feature combination on Support Vector Machine classifier. The experiments show that Mel cepstrum coefficients is highest and reaches to 78% when Using single feature for recognition, and more feature and more high contribution when using feature combination.
作者 李文华 姜林
出处 《智能计算机与应用》 2017年第2期56-58,共3页 Intelligent Computer and Applications
基金 江西省教育厅科技计划(GJJ150585)
关键词 语音情感识别 情感特征选取 定量分析 支持向量机 Speech Emotion Recognition emotional feature selection quantitative analysis Support Vector Machine
  • 相关文献

参考文献3

二级参考文献107

  • 1沙金,邓成玉,张翠肖,刘伟峰.闭合序列模式挖掘算法[J].计算机工程与设计,2006,27(3):514-518. 被引量:9
  • 2叶庆云,蒋佳.基于语音MFCC特征的改进算法[J].武汉理工大学学报,2007,29(5):150-152. 被引量:9
  • 3余伶俐,蔡自兴,陈明义.语音信号的情感特征分析与识别研究综述[J].电路与系统学报,2007,12(4):76-84. 被引量:27
  • 4AGRAWAL R, SRIKANT R. Mining sequential patterns [ C ]//Proc of the 11 th international Conference on Data Engineering. Washington DC : IEEE Computer Society, 1995:3-14.
  • 5ZAKI M J. SPADE: an efficient algorithm for mining frequent se- quences [J]. Machine Learning Journal,2001,42( 1 ) :31-60.
  • 6AYRES J, FLANNICK J, GEHRKE J, et al. Sequential pattern mining using a bitmap representation [ C ]//Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery andData Mining. New York: ACM Press,2002:429-435.
  • 7PEI Jian, HAN Jia-wei, MORTAZAVI-ASL B, et al. PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth [ C ]//Proc of of the 17th International Conference on Data En- gineering. 2001:215-224.
  • 8YAN Xi-feng, HAN Jia-wei, AFSHAR R. CloSpan: mining closed sequential patterns in large datasets[ C ]//Proc of the 3rd SIAM Inter- national Conference on Data Mining. 2003 : 166-177.
  • 9WANG Jian-yong, HAN Jia-wei. BIDE: efficient mining of frequent closed sequences [ C ]//Proc of the 20th International Conference on Data Engineering. Washington DC : IEEE Computer Society, 2004 : 79-90.
  • 10LOEKITO E, BAILEY J , PEI J. A binary decision diagram based ap- proach for mining frequent subsequences [ J]. Knowledge and In- formation Systems, 2010,24 ( 2 ) : 235- 268.

共引文献182

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部