摘要针对弱目标的检测与定位问题,提出一种改进的拟蒙特卡罗粒子滤波检测前跟踪(Imporve Quasi-Maonte Carlo Intelligent Particle Filter Track Before Detect,IQIPF-TBD)算法。解决了粒子多样性匮乏的问题并有效的降低了粒子数,使追踪的结果更加精确。
4PARK J B, JEONG Y W, SHIN J R, et al. An improved particle swarm optimization for nonconvex economic dispatch problems[J]. IEEE Transactions on Power Systems, 2010, 25(1): 156 - 167.
5KENNEDY J, EBERHERT R. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.
6OZCAN E, MOHAN C K. Particle swarm optimization surfing the waves[C]//Processings of Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1939- 1944.
7CLERK M, KENNEDY J. The particle swarm-explosion stability and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1 ): 58 - 73.
8TRELEA I C. The particle swarm optimization algorithm conver- gence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6): 317 - 325.
9VAN DEN BERGH E An analysis of particle swarm optimizer[D]. South Africa: University of Pretoria, 2002.
10VAN DEN BERGH F, ENGELBRECHT A E A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 178(8): 937- 971.