期刊文献+

面向数据直方图发布的差分隐私保护综述 被引量:8

Survey of differential privacy for data histogram publication
下载PDF
导出
摘要 与匿名隐私保护相比,差分隐私保护作为一种新的隐私保护技术,能抵抗假设攻击和背景知识攻击。差分隐私保护的直方图发布能够直观地表示数据的发布信息,针对国内外在静态数据集和动态数据流方向上的数据直方图发布的差分隐私保护研究现状进行介绍,讨论有关静态数据集下直方图存在长区间添加噪声而导致的噪声累积、数据可用性低以及动态数据流下隐私预算容易耗尽问题的解决方法,对基于直方图的差分隐私保护各相关算法进行对比与分析,最后总结出目前差分隐私保护技术的应用及未来的研究方向。 Compared with the anonymous privacy protection, differential privacy protection as a new privacy protection technology can resist assume attacks and background knowledge attacks. Histogram publication under differential privacy protection can give a visual representation for data release. This paper introduced the technologies of differential privacy protection for data histogram publication on the static and dynamic data sets in the domestic and foreign. Then it discussed the solutions to the noise accumulation and low data availability resulted by adding noise in long range of histogram on static data sets, and privacy budget being easy to run out on dynamic data sets. It made some comparisons and analysis among main differential privacy protection technologies for histogram publication. Finally this paper summarized some of the current applications and potential future research directions for differential privacy protection technology.
出处 《计算机应用研究》 CSCD 北大核心 2017年第6期1609-1612,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(61462009) 广西高等学校优秀中青年骨干教师培养工程项目(GXQG012013014) 广西民族大学中国-东盟研究中心(广西科学实验中心)2014年度开放课题(TD201404)
关键词 直方图 差分隐私保护 静态数据集 噪声 隐私预算 动态数据流 histogram differential privacy protection static data sets noise privacy budget dynamic data streams
  • 相关文献

参考文献8

二级参考文献99

  • 1Blum A,Dwork C,McSherry F,et al.Practical Privacy:The SuLQ Framework[C] //24th ACM SIGMOD International Conference on Management of Data / Principles of Database Systems,Baltimore (PODS 2005).Baltimore,Maryland,USA,June 2005.
  • 2Dwork C.Differential Privacy[C] //33rd International Colloquium on Automata,Languages and Programming,part Ⅱ (ICALP 2006).Venice,Italy,Springer Verlag,July 2006.
  • 3Dwork C.Differential Privacy:A Survey of Results[C] //Theory and Applications of Models of Computation(TAMC2008).Xi'an,China,Springer Verlag,April 2008.
  • 4Dwork C.The Differential Privacy Frontier[C] //6th Theory of Cryptography Conference (TCC 2009).San Francisco,CA,Springer Verlag,March 2009.
  • 5Dwork C.Differential Privacy in New Settings[C] //Symposium on Discrete Algorithms (SODA),Society for Industrial and Applied Mathematics.Austin,TX,January 2010.
  • 6Dwork C.A Firm Foundation for Private Data Analysis[J].Communications of the ACM,2011,54 (1):86-95.
  • 7Dwork C.The Promise of Differential Privacy.A Tutorial on Algorithmic Techniques[C] // 52nd Annual IEEE Symposium on Foundations of Computer Science.Palm Springs,CA,October 2011.
  • 8Agrawal R,Strikant R.Privacy-preserving data mining[C] //Proceedings of the 2000 ACM SIGMOD International Conference on Managementof Data.Dallas,Texas,May 2000:439-450.
  • 9Sweeney L.K-anonymity:A Model for Protecting Privacy[J].International Journal on Uncertainty[J].Fuzziness and Knowledge-based Systems,2002,10 (5):557-570.
  • 10Lindell Y,Pinkas B.Privacy preserving data mining[C] // Proceedings of the 20th Annual International Cryptology Conference on Advances in Cryptology.Santa Barbara,California,August 2000:36-54.

共引文献83

同被引文献33

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部