摘要
与匿名隐私保护相比,差分隐私保护作为一种新的隐私保护技术,能抵抗假设攻击和背景知识攻击。差分隐私保护的直方图发布能够直观地表示数据的发布信息,针对国内外在静态数据集和动态数据流方向上的数据直方图发布的差分隐私保护研究现状进行介绍,讨论有关静态数据集下直方图存在长区间添加噪声而导致的噪声累积、数据可用性低以及动态数据流下隐私预算容易耗尽问题的解决方法,对基于直方图的差分隐私保护各相关算法进行对比与分析,最后总结出目前差分隐私保护技术的应用及未来的研究方向。
Compared with the anonymous privacy protection, differential privacy protection as a new privacy protection technology can resist assume attacks and background knowledge attacks. Histogram publication under differential privacy protection can give a visual representation for data release. This paper introduced the technologies of differential privacy protection for data histogram publication on the static and dynamic data sets in the domestic and foreign. Then it discussed the solutions to the noise accumulation and low data availability resulted by adding noise in long range of histogram on static data sets, and privacy budget being easy to run out on dynamic data sets. It made some comparisons and analysis among main differential privacy protection technologies for histogram publication. Finally this paper summarized some of the current applications and potential future research directions for differential privacy protection technology.
出处
《计算机应用研究》
CSCD
北大核心
2017年第6期1609-1612,共4页
Application Research of Computers
基金
国家自然科学基金资助项目(61462009)
广西高等学校优秀中青年骨干教师培养工程项目(GXQG012013014)
广西民族大学中国-东盟研究中心(广西科学实验中心)2014年度开放课题(TD201404)
关键词
直方图
差分隐私保护
静态数据集
噪声
隐私预算
动态数据流
histogram
differential privacy protection
static data sets
noise
privacy budget
dynamic data streams