摘要
针对仿冒主用户(PUE)恶意干扰并占用有效频段所造成的频谱资源稀缺问题,提出了一种基于高斯函数特征提取的PUE攻击检测方法。在论证码元上包络起伏特征可以作为细微特征提取的基础上,结合高斯拟合,提取出不同用户发射源的特征参数,利用模糊C-均值聚类算法来区分主用户与仿冒攻击用户。仿真实验证明,该方法在不同信噪比下所提取出的两个辐射源特征差异明显、稳定性高、可靠性好,能够快速有效地检测出PUE攻击用户。
For the PUE attack detection take effective spectrum caused by the frequency spectrum resource scarcity problem, this paper proposed a PUE attack detection method based on Gauss function feature extraction. Based on the envelope fluctua- tion characteristics of symbols could used to extract subtle feature and combined with Gaussian fitting, it could extract the cha- racteristic parameters from different users and distinguish the main users and the phishing attacks by using the FCM clustering algorithm. For the two radiation source features extracted from different signal to noise ratio the simulation results show that the method has obvious difference, high stability and reliability and can detect the PUE attacks quickly and effectively.
出处
《计算机应用研究》
CSCD
北大核心
2017年第6期1798-1800,共3页
Application Research of Computers
基金
陕西省教育厅资助项目(15JK1649)
关键词
仿冒主用户
码元包络
特征提取
高斯拟合
模糊C-均值聚类算法
primary user of emulation (PUE)
element envelope
feature extraction
Gauss fitting
FCM clustering algorithm