期刊文献+

基于半像素运动估计的DCVS残差重建算法 被引量:1

Residual reconstruction algorithm based on half pixel interpolation motion estimation for distributed compressive video sensing
下载PDF
导出
摘要 针对分布式视频压缩感知中非关键帧重建质量较差的问题进行了研究,提出了一种基于半像素插值技术的残差多假设块迭代重建算法。该算法先对重建后的相邻关键帧进行半像素插值运动估计生成当前非关键帧的边信息;然后在测量域内对非关键帧与边信息求残差,并对残差进行多假设重建;最后将重建的残差与边信息进行融合得到重建的非关键帧。仿真结果表明,基于半像素插值的改进残差多假设块迭代重建算法比多假设迭代重建算法重建质量平均提高了0.3~1.4 dB,提高了非关键帧的重建质量。 This paper studied the problem of the poor quality of non-key frame reconstruction in distributed compressive video sensing and proposed a residual reconstruction algorithm based on half pixel interpolation for the problem. First, it obtained a side information of the current non-key frame by dealing with the reconstruction of two adjacent key frames based on half pixel interpolation. Second, it implemented a reconstruction of the difference between non-key frame and side information (SI) in measurement domain using multi hypothesis predictions. Third, it obtained the result of non-key frame by dealing with the SI and the reconstructed difference. Experimental results reveal that, compared to the residual reconstruction algorithm based on multi hypothesis predictions, the proposed residual reconstruction algorithm improves the quality of non-key frame reconstruc- tion by O. 3 dB to 1.4 dB on the average.
出处 《计算机应用研究》 CSCD 北大核心 2017年第6期1867-1870,1880,共5页 Application Research of Computers
基金 江苏省自然科学基金资助项目(BK20141389)
关键词 半像素插值 多假设 边信息 运动估计 分布式视频编码 half pixel interpolation multi hypothesis side information motion estimation distributed compressive video coding
  • 相关文献

参考文献4

二级参考文献41

  • 1刘荣科,岳志,陈长汶.Side Information Generation Based on Hierarchical Motion Estimation in Distributed Video Coding[J].Chinese Journal of Aeronautics,2009,22(2):167-173. 被引量:4
  • 2PEREIRA F,GUILLEMOT C,EBRAHIMI T,et al.Distributed videocoding:selecting the most promising application scenarios[J].Im-age Communication,2008,23(5):339-352.
  • 3GRIOD B,AARON A,RANE S.Distributed video coding[J].Procof IEEE,2005,93(1):71-83.
  • 4DONOHO D L.Compressed sensing[J].IEEE Trans on Informa-tion Theory,2006,52(4):1289-1306.
  • 5CANDES E,ROMBERG J,TAO T.Robust uncertainty principles:exactsignal reconstruction from highly incomplete frequency information[J].IEEE Trans on Information Theory,2006,52(2):489-509.
  • 6BARON D,WAKIN M B,DUARTE M,et al.Distributed compressedsensing[EB/OL].http://www.dsp.rice.edu/~drorb/pdf/DCS112005.pdf.
  • 7KANG Li-wei,LU Chun-shien.Distributed compressive video sens-ing[C]//Proc of IEEE International Conference on Acoustics,Speech,and Signal Processing.Washington DC:IEEE Computer Soci-ety,2009:1169-1172.
  • 8TROPP J,GILBERT A.Signal recovery from random measurementsvia orthogonal matching pursuit[J].IEEE Trans Information Theo-ry,2007,53(12):4655-4666.
  • 9BIOUCAS-DIAS J M,FIGUEIREDO M A T.A new TwIST:two-stepiterative shrinkage/thresholding algorithms for image restoration[J].IEEE Trans on Image Processing,2007,16(12):2992-3004.
  • 10FIQUEIREDO M A T,NOWAK R D,WRIGHT S J.Gradient pro-jection for sparse reconstruction:application to compressed sensingand other inverse problems[J].IEEE Journal of Selected Topicsin Signal Processing,2007,1(4):586-597.

共引文献13

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部