摘要
设W是一包含所有内射模的模类.定义了M-型模,在W-GF闭环上证明了任意给定的W-Gorenstein平坦模的正合序列G=...→G_2→d_2G_1→d_1G_0→d_0G_(-1)→d_(-1)G_(-2)→d_(-2)...,若对任意E∈W,复形E_RG正合,则对任意i∈?,模Im(d_i)是W-Gorenstein平坦模.
Let W be a class of R-modules that contains all injective R-modules. M-type modules are defined. In the setting of a W-GF closed ring, we showed that if an exact sequence of W-Gorenstein fiat modulesG=…→G2d2→G1d1→G0d0→G-1d-1→G-2d-2→…, such that the complex E RG is exact for every E be- longing to W, then the modules Im(d,) are W-Gorenstein fiat modules for every positive integeral i.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第2期235-240,共6页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(11201376
11026061)