摘要
设M^n为等距浸入到de Sitter空间S_p^(n+p)(c)中的完备类空子流形,平均曲率H有界且具有平行单位平均曲率向量场.如果Mn的第2基本型模长平方S满足S≤n^2-n^(1/2)/nH^2+c/n,证明了该子流形的余维数p可约化为1.
Let M^n be a complete space-like submanifold isometric immersed into de Sitter space Sp^n+p (c), whose mean curvature is bounded with a parallel normalized mean curvature vector field. If the squared norm S of the second fundamental form of M^n satisfies S≤n^2-√n/n H^2+c/n,then the codimensionp of M^n is reduced to 1.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第2期249-252,共4页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(11261051)