摘要
提出了变质量非完整非保守系统守恒定理构成的一般途径 ,给出了积分因子的定义 ,研究了守恒量存在的必要条件 ,建立了变质量非完整非保守动力学系统Hamilton正则方程的守恒定理 ,并举例说明结果的应用 .由实例可明显看出 ,用积分因子理论求系统的守恒量 ,与以前的方法相比 ,具有限制条件少、运算简单的优点 .
A general aporoach to the construction of conservation laws for variable mass nonholonomic nonconservation systems is presented. by birst delining the integrating factors then studying the necessary conditions for existence of the conserved quantities, and binally estolblishing the conservation theorem for Hamilton's canonical equations of motion of variable mass nonhalonomic nonconservative dynamical systems, An example is given at the end to illustrate the application of the result.The method of using intergrating factors to find the conserved quantities of system has excellent feature that is few constraint conditions and simple function compared with old methods can be found obviously.Therefore,it has a value of wide applications.
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
2002年第4期118-121,共4页
Journal of Harbin Engineering University
基金
黑龙江省自然科学基金资助项目 (A0 1-0 6)
关键词
变质量
非完整非保守系统
HAMILTON正则方程
积分因子
守恒定理
variable mass
nonholonomic nonconservative system
Hamilton's canonical equation
integrating factor conservation law.