期刊文献+

海洋平台多能互补系统电源容量优化 被引量:1

Power Source Capacity Optimization in Multiple Energy Complementary System for Offshore Platform
下载PDF
导出
摘要 将风、光等新能源应用于海洋平台成为研究的热点,但其波动性对平台电力系统带来一定的不安全因素,所以实际应用中,往往采用风光柴储的多能系统。研究中以海洋平台为研究对象,对多能系统的电源容量进行优化,保证系统的经济性和稳定性,实现新能源最大化利用。研究中为了提高整个海洋平台电力系统的经济性,需根据海洋平台附近的资源条件对系统的电源容量进行优化设计,选取最优的电源容量组合。本文建立了独立风/光/柴/储海洋平台电力系统中各个电源的多目标优化模型,利用多目标粒子群(multi-objective particle swarm optimization,MOPSO)求解系统中各个电源容量配置的Pareto最优解集,并基于满意度评价的模糊理论设计推荐的折衷解。 Applying the new energy, such as wind, solar, to platform becomes a research hotspot, but its volatility brings some unsafe factors of electrical power system on the platform, so in the practical application, the multi-energy complementary system of wind/solar/diesel/battery is adopted. In the study, we take the offshore platform as research object, and optimize the power source capacity of pluripotent system, to ensure the economy and stability of the system, and to maximize the utilization of the new energy. In order to improve the economic benefit of the electrical power system on the offshore platform, we make an optimization design of power source capacity of the system based on the near resource conditions of the ocean platform to select the optimal capacity allocation. This paper establishes multi-objective optimization model of the power supply in the independent wind/solar/diesel/battery system on the offshore platform, using multi-objective particle swarm (MOPSO) to get the Pareto optimal solution set, from which the recommended compromise solution is designed using the fuzzy theory based on the satisfaction evaluation.
作者 贾涛 王兴月
出处 《船电技术》 2017年第5期55-59,共5页 Marine Electric & Electronic Engineering
关键词 容量优化 风光互补 多目标粒子群 模糊理论 capacity optimization multi-energy complementary multi-objective particle swarm fuzzy theory
  • 相关文献

参考文献2

二级参考文献29

  • 1Banos R, Manzano-Agugliaro F, Montoya F G, et al. Optimization methods applied to renewable and sustainable energy: a review[J]. Renewable and Sustainable Energy Reviews, 2011(15): 1753-1766.
  • 2Barley C D, Winn C B. Optimal dispatch strategy in remote hybrid power systems[J]. Solar Energy, 1996, 58(4): 165-179.
  • 3Manwell J, Rogers A, Hayman G, et al. Hybrid2: a hybrid system simulation model, theory manual[R/OL]. Boston: Renewable Energy Research Laboratory, Department of Mechanical Engineering, University of Massachusetts, 2006. http://www.ecs.umass.edu/mie/labs/rerl/hy2/.
  • 4Ouddalov A, Chartouni D, Ohler C. Optimizing a battery energy storage system for primary frequency control[J]. IEEE Transactions on Power Systems, 2007, 22(3).. 1259-1266.
  • 5Tirumala R, Mohan N, Henze C. Seamless transfer of grid-connected PWM inverters between utility-interactive and stand-alone modes[C]//Applied Power Electronics Conference and Exposition, seventeenth Annual IEEE. Dallas, USA.. IEEE, 2002: 1081-1086.
  • 6Jung S, Bae Y, Choi S, et al. A low cost utility interactive inverter for residential fuel cell generation[J]. IEEE Transactions on Power Electronics, 2007, 22(6) : 2293-2297.
  • 7Chen C L, Wang Yubin, Lai J-S, et al. Design of parallelinverters for smooth mode transfer microgrid applications[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 6-14.
  • 8Yao Zhilei, Xiao Lan, Yah Yangguang. Seamless transfer of single-phase grid-interactive inverters between grid-connected and stand-alone modes[J] . IEEE Transactions on Power Electronics, 2010, 25(6) : 1597-1602.
  • 9Rocabert J, Azevedo G, Vazquez G, et al. Intelligent control agent for transient to an island grid[C]//2010 IEEE International Symposium on Industrial Electronics (ISIE). Bari: IEEE, 2010: 2223-2228.
  • 10Miao Zhixin, Domijan J, Fan Lingling. Investigation of microgrids with both inverter interfaced and direct ac-connected distributed energy resources[J]. IEEE Transactions on Power Delivery, 2011,26(3): 1634-1642.

共引文献283

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部