期刊文献+

Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM

Direct discrimination between semiconducting and metallic single-walled carbon nanotubes with high spatial resolution by SEM
原文传递
导出
摘要 Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution. Here, we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors. The average width of the single-SWCNT image was reduced to -9 nm, -1/5 of previous imaging results. These achievements were attributed to reduced surface charging on the SiOdSi substrate under enhanced accelerating voltages. With this identification technique, a CNT transistor with an on/off ratio of 〉10s was fabricated by identifying and etching out the white metallic SWCNTs. This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs. Single-walled carbon nanotube (SWCNT) films with a high density exhibit broad functionality and great potential in nanodevices, as SWCNTs can be either metallic or semiconducting in behavior. The films greatly benefit from characterization technologies that can efficiently identify and group SWCNTs based on metallic or semiconducting natures with high spatial resolution. Here, we developed a facile imaging technique using scanning electron microscopy (SEM) to discriminate between semiconducting and metallic SWCNTs based on black and white colors. The average width of the single-SWCNT image was reduced to -9 nm, -1/5 of previous imaging results. These achievements were attributed to reduced surface charging on the SiOdSi substrate under enhanced accelerating voltages. With this identification technique, a CNT transistor with an on/off ratio of 〉10s was fabricated by identifying and etching out the white metallic SWCNTs. This improved SEM imaging technique can be widely applied in evaluating the selective growth and sorting of SWCNTs.
出处 《Nano Research》 SCIE EI CAS CSCD 2017年第6期1896-1902,共7页 纳米研究(英文版)
关键词 single-walled carbonnanotube scanning electronmicroscopy surface charging TRANSISTOR single-walled carbonnanotube,scanning electronmicroscopy,surface charging,transistor
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部