期刊文献+

全固态锂离子电池硫化物电解质的研究进展 被引量:1

Research Progress on Sulfide Electrolyte for All-Solid-State Lithium Batteries
原文传递
导出
摘要 目前,锂离子电池已经广泛地应用于交通、通讯、便携式电子产品及电动工具等领域。传统的锂离子电池采用液体电解液,存在易挥发、易泄漏、抗冲击性能差等缺点,存在安全隐患。全固态电解质具有热稳定性高、循环寿命长、抗震动性能好等优点,是锂离子电池取代液体电解液的一种理想替代方案。硫化物电解质体系具有离子导电率高、制备简便、电化学窗口宽等优点,已经成为全固态锂离子电池的研究热点。综述了全固态锂电池Li2S-P2S5基电解质的最新研究进展,总结了各种性能改进方法,并对其应用前景做了展望。 Recently, lithium-ion batteries have been widely used in the field of transportation, communication, portable electronics and electric tools, etc. Traditional lithium ion batteries pose a lot of safety hazards by using liquid electrolyte, such as volatility, easy to leak, poor impact resistance, etc. All-sol- id-state electrolyte, which has the property of high thermal stability, long cycle life, shock resistant per- formance, is an ideal alternative material to replace the liquid electrolyte. The sulfide electrolyte with many advantages, including high ionic conductivity, simple preparation, wide electrochemical window, has become a research focus of all-solid-state lithium ion batteries recently. The progress of Li2S-P2S5 based electrolytes of all-solid-state lithium-ion battery is introduced in this paper. The latest research re- suits and various improvements of battery performance are summarized, and the prospect of application for the sulfide electrolyte in the future is also discussed.
出处 《化学工业与工程》 CAS CSCD 2017年第3期50-57,共8页 Chemical Industry and Engineering
关键词 全固态锂离子电池 硫化物电解质 机械球磨 离子电导率 化学稳定性 all-solid-state lithium-ion battery sulfide electrolyte mechanical ball-milling ionic conductivity chemical stability
  • 相关文献

参考文献3

二级参考文献188

  • 1冯守华,庞广生,徐如人.微波诱导合成固体快离子导电材料[J].高等学校化学学报,1996,17(10):1495-1499. 被引量:16
  • 2TARASCON J M, ARMAND M. Issues and challenges facingre chargeable lithium batteries [J]. Nature, 2001, 414(6861): 359-367.
  • 3GOODENOUGH J B, KIM Y. Challenges for rcchargcable Li batteries [J]. Chcm Mater, 2010, 22(3): 587-603.
  • 4THANGADURAI V, WEPPNER W. Recent progress in solid oxide and lithium ion conducting electrolytes research [J]. Ionics, 2006, 12(1): 81-92.
  • 5KANNO R, MURAYAMA M. Lithium ionic conductor thio-LISICON:The Li2S-GeS2-P2S5 system [J]. J Electrochem Soe, 2001, 148(7): A742-A746.
  • 6ARBI K, MANDAL S, ROJO J M, ct al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx. (PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study [J]. Chem Mater, 2002, 14(3): 1091-1097.
  • 7THANGADURAI V, WEPPNER W. Li6ALa2Ta2OI2 (A = Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction [J]. Adv Funct Mater, 2005, 15(1): 107-112.
  • 8STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review [J]. Chem Mater, 2003, 15: 3974-3990.
  • 9KNAUTH P. Inorganic solid Li ion conductors: An overview [J]. Solid State Ionics, 2009, 180(14-16): 911-916.
  • 10BOULANT A, BARDEAU J F, JOUANNEAUX A, et al. Reaction mechanisms of Li0.30La0.57TiO3 powder with ambient air: H^+/Li^+ exchange with water and Li2CO3 formation [J]. Dalton Trans, 2010, 39(16): 3968-3975.

共引文献79

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部