期刊文献+

氮掺杂石墨烯用于碱性燃料电池产过氧化氢 被引量:1

Nitrogen-doped graphene for making hydrogen peroxide in alkaline fuel cell
下载PDF
导出
摘要 以天然石墨(G)为原料,苯胺为含氮前驱体,采用Hummers法、原位引发苯胺聚合以及在氮气中高温热处理制备了氮掺杂石墨烯(N-G)。借助X射线衍射(XRD)、傅里叶转换红外光谱(FT-IR)、透射电子显微镜(TEM)、低温氮气吸脱附(BET)、热分析方法(TG-DSC)和电化学测试等手段对N-G的组成、结构、形貌和电化学性能等进行表征分析和评价。结果表明,在氮气中高温热处理聚苯胺修饰的氧化石墨烯(GO)能够有效地对其进行还原和氮掺杂,获得的N-G具有微孔结构,比表面积达到167.6 m^2/g,显示出高的热稳定性;在三电极体系中,N-G在0.1 mol/L KOH中催化氧气还原反应(ORR)的起始电势为0.89 V,主要以2电子反应途径进行,生成H_2O_2的选择性达到75%~95%,并且产生的电流密度较大。 Nitrogen-doped graphene( N-G) is prepared by using natural graphite and aniline as start material and nitrogen-containing precursor,using Hummers method,in-situiniation aniline polymerization together with high temperature heat treatment in nitrogen gas. The composition,structural properties,morphology and electrochemical performances are characterized and evaluated by X-ray diffraction( XRD). Flourier transformation infrared spectroscopy( FT-IR),transmission electron microscopy( TEM),low temperature nitrogen adsorption-desorption analysis( BET),thermogravimetry-differential scanning calorimetry( TG-DSC) and electrochemical tests. The results indicate that graphene oxide( GO) after high temperature heat treatment in nitrogen gas and polyaniline modification can be reduced and doped effectively. The obtained N-G owns microporous structure with specific surface area reaching 167. 6 m^2/g,revealing high thermal stability. With the N-G as cathodic catalyst in three-electrode system,the oxygen reduction reaction( ORR) mainly proceeds in a two-electron pathway with 0. 89 V of onset potential in 0. 1 mol/L KOH solution;the selectivity towards hydrogen peroxide reaches 75%-95% and it generates high current density.
出处 《现代化工》 CAS CSCD 北大核心 2017年第5期62-66,共5页 Modern Chemical Industry
基金 国家民委科研项目(14BFZ014) 宁夏高等学校科学研究项目(NGY2015160) 省部共建"粉体材料及特种陶瓷重点实验室"项目(14BFZ014) 北方民族大学校级创新项目(2016-XJ-CL-046)
关键词 氮掺杂石墨烯 聚苯胺 氧还原反应 碱性燃料电池 过氧化氢 nitrogen-doped graphene polyaniline oxygen reduction reaction alkaline fuel cell reactor hydrogen peroxide
  • 相关文献

参考文献3

二级参考文献23

  • 1郁青红,周明华,雷乐成.新型气体扩散电极体系高效产H_2O_2的研究[J].物理化学学报,2006,22(7):883-887. 被引量:30
  • 2宋天顺,徐源,徐夫元,陈英文,沈树宝.燃料电池型反应器生产过氧化氢的研究进展[J].现代化工,2007,27(7):9-12. 被引量:6
  • 3Alcaide F, Cabot P L, Brillas E. Fuel Cells for Chemical and Energy Cogeneration [J]. J. Power Sources, 2006, 153: 47-60.
  • 4Yamanaka I, Hashimoto T, Takenaka S, et al. Direct and Continuous Production of Hydrogen Peroxide with 93% Selectivity Using a Fuel-cell System [J]. Angew. Chem. Int. Ed., 2003, 42: 3653-3655.
  • 5Yamanaka I, Hashimoto T, Otsuka K. Direct Synthesis of Hydrogen Peroxide (>1 wt%) over the Cathode Prepared from Active Carbon and Vapor-grown-Carbon-fiber by a New H2-O2 Fuel Cell System [J] Chem. Lett., 2002, 8: 852-853.
  • 6Brillas E, Alcaide F, Cabot P L. A Small-scale Flow Alkaline Fuel Cell for on-site Production of Hydrogen Peroxide [J]. Electrochim. Acta, 2002, 48: 331-340.
  • 7Yamanaka I, Onizawa T, Suzuki S, et al. Electrocatalysis of Heat-treated Mn-porphyrin/Carbon Cathode for Synthesis of H2O2 Acid Solutions by H2-O2 Fuel Cell Method [J]. Chem. Lett., 2006, 35(7) 1330-1331.
  • 8Alcaide F, Brillas E, Cabot P L. EIS Analysis of Hydroperoxide Ion Generation in an Uncatalyzed Oxygen-diffusion Cathode [J]. J. Electroanal. Chem., 2003, 547: 61-73.
  • 9Alcaide F, Brillas E, Cabot P L. Electrogeneration of Hydroperoxide Ion Using an Alkaline Fuel Cell [J]. J. Electrochem. Soc., 1998,145(10): 3444-3449.
  • 10Lobyntseva E, Kallio T, Alexeyeva N, et al. Electrochemical Synthesis of Hydrogen Peroxide: Rotating Disk Electrode and Fuel Cell Studies [J]. Electrochim. Acta, 2007, 52(25): 7262-7269.

共引文献51

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部